Advanced Ultrasound in Diagnosis and Therapy ›› 2024, Vol. 8 ›› Issue (4): 205-216.doi: 10.37015/AUDT.2024.240059
• Review Articles • Previous Articles Next Articles
Wang Xinqia,b,1, Chen Annic,1, Yang Land,1, Chen Yac, Li Zhenyie, Li Zhaojuna,b,*(), Jin Line,*(
)
Received:
2024-10-08
Accepted:
2024-12-25
Online:
2024-12-30
Published:
2024-11-12
Contact:
Li Zhaojun, Jin Lin,
E-mail:lzj_1975@sina.com;jinlin205@163.com
About author:
First author contact:1 Xinqi Wang, Anni Chen and Lan Yang contributed equally to this study.
Wang Xinqi, Chen Anni, Yang Lan, Chen Ya, Li Zhenyi, Li Zhaojun, Jin Lin. Evaluation Methods and Progress of Right Ventricular-pulmonary Artery Coupling. Advanced Ultrasound in Diagnosis and Therapy, 2024, 8(4): 205-216.
Table 1
Comparison of advantages and disadvantages of echocardiographic indicators"
Index | Definition/Reflection | Advantages | Disadvantages |
---|---|---|---|
Invasive method | |||
Ees/Ea | End-systolic elastance /arterial elastance | High sensitivity; High accuracy. | High technical difficulty; Bedside application is limited; False positive; Expensive. |
Noninvasive methods | |||
TAPSE/PASP | Tricuspid annular plane systolic excursion/pulmonary artery systolic pressure | Easy to obtain; Independent of image quality; Reproducible. | Angular dependence; Low accuracy of tricuspid regurgitation; Not reflect global RV function. |
RVEF/PASP | Right ventricular ejection fraction/pulmonary artery systolic pressure | Independent of RV geometry assumptions. | 3D-E has low temporal resolution; Dependent image quality. |
RV-FWLS/PASP | RV free wall longitudinal strain/pulmonary artery systolic pressure | High availability and reproducibility; Relatively load; Angle independent; Does not require a perfect border delineation. | Complex measurement; Susceptible to other factors. |
RV-LSF/PASP | Right ventricular longitudinal fractional/pulmonary artery systolic pressure | Fast and reliable; More accurate and useful. | Dependent image quality; High technical difficulty. |
TAS’/PASP | Tricuspid annular peak systolic tissue Doppler velocity/pulmonary artery systolic pressure | Easy access. | Angular dependence; Not accurate in the presence of segmental wall motion abnormalities in the RV. |
RVFAC/RVSP | Right ventricular fractional area change/right ventricular systolic pressure | Easy to obtain; Angle independent; Software analysis is not required. | Depends on image quality. |
S’/RVSP | Tricuspid annular peak systolic tissue Doppler velocity/right ventricular systolic pressure | Easy to obtain; Independent of image quality; There is less dependence on afterload compared to TAPSE. | Angular dependence; Individual segments were used to represent global RV function. |
RVFWLS/RVSP | RV free wall longitudinal strain/right ventricular systolic pressure | Angle independence; High sensitivity and accuracy; Repeatable; Not affected by the environment. | Dependent on image quality; Spots with out-of-plane motion were present. |
TAPSE/RVSP | Tricuspid annular plane systolic excursion/right ventricular systolic pressure | Simple and reproducible; Closely related to the longitudinal systolic function of the right ventricle; Additional information on right ventricular systolic function is provided. | Angular dependence and may not be accurate when the segmental wall motion of the right ventricle is abnorma; Load dependent. |
RV forward SV/ESV | RV forward stroke volume/end-systolic volume | High reliability. | Accurate RV volume measurements are required. |
S’ /RVESAi | Tricuspid annular peak systolic tissue Doppler velocity/RV end-systolic area index | RV S’ is closely related to RV longitudinal systolic function; Additional information on RV systolic function is provided. | Angular dependence; Not accurate when the segmental wall motion of the RV is abnormal; Measurement of RVESAi requires tissue Doppler or speckle tracking techniques; Dependent image quality; High technical difficulty. |
[1] | Dayer N, Ltaief Z, Liaudet L, Lechartier B, Aubert JD, Yerly P. Pressure overload and right ventricular failure: From pathophysiology to treatment. J Clin Med 2023; 12:4722. |
[2] | Todaro MC, Carerj S, Zito C, Trifirò MP, Consolo G, Khandheria B. Echocardiographic evaluation of right ventricular-arterial coupling in pulmonary hypertension. Am J Cardiovasc Dis 2020; 10:272-283. |
[3] | Sunagawa K, Maughan WL, Burkhoff D, Sagawa K. Left ventricular interaction with arterial load studied in isolated canine ventricle. American Journal of Physiology-Heart and Circulatory Physiology 1983; 245:H773-H780. |
[4] | Hsu S. Coupling right ventricular-pulmonary arterial research to the pulmonary hypertension patient bedside. Circ Heart Fail 2019; 12:e005715. |
[5] | He S, Zhu T, Fang Z. The role and regulation of pulmonary artery smooth muscle cells in pulmonary hypertension. Int J Hypertens 2020; 2020:1478291. |
[6] | Pinsky MR. The right ventricle: Interaction with the pulmonary circulation. Crit Care 2016; 20:266. |
[7] | Stubbs H, MacLellan A, Lua S, Dormand H, Church C. The right ventricle under pressure: Anatomy and imaging in sickness and health. Journal of Anatomy 2023; 242:17-28. |
[8] | Taverne YJHJ, Sadeghi A, Bartelds B, Bogers AJJC, Merkus D. Right ventricular phenotype, function, and failure: a journey from evolution to clinics. Heart Fail Rev 2021; 26:1447-1466. |
[9] |
Ghio S, Schirinzi S, Pica S. Pulmonary arterial compliance: How and why should we measure it? Glob Cardiol Sci Pract 2015; 2015:58.
doi: 10.5339/gcsp.2015.58 pmid: 26779530 |
[10] |
McCormick A, Krishnan A, Badesch D, Benza RL, Bull TM, De Marco T, et al. Pulmonary artery compliance in different forms of pulmonary hypertension. Heart 2023; 109:1098-1105.
doi: 10.1136/heartjnl-2022-321760 pmid: 36787969 |
[11] | Weatherald J, Zanini U, Humbert M. Illuminating the importance of pulmonary arterial compliance in pulmonary hypertension. Am J Respir Crit Care Med 2023; 208:231-233. |
[12] | Sanz J, Sánchez-Quintana D, Bossone E, Bogaard HJ, Naeije R. Anatomy, function, and dysfunction of the right ventricle: Jacc state-of-the-art review. J Am Coll Cardiol 2019; 73:1463-1482. |
[13] | Neelakantan S, Mendiola EA, Zambrano B, Vang A, Myers KJ, Zhang P, et al. Dissecting contributions of pulmonary arterial remodeling to right ventricular afterload in pulmonary hypertension. bioRxiv 2024; 19:2024.08.18.608471. |
[14] | Inampudi C, Tedford RJ, Hemnes AR, Hansmann G, Bogaard HJ, Koestenberger M, et al. Treatment of right ventricular dysfunction and heart failure in pulmonary arterial hypertension. Cardiovasc Diagn Ther 2020; 10:1659-1674. |
[15] |
Ghio S, Gavazzi A, Campana C, Inserra C, Klersy C, Sebastiani R, et al. Independent and additive prognostic value of right ventricular systolic function and pulmonary artery pressure in patients with chronic heart failure. J Am Coll Cardiol 2001; 37:183-188.
doi: 10.1016/s0735-1097(00)01102-5 pmid: 11153735 |
[16] | He Q, Lin Y, Zhu Y, Gao L, Ji M, Zhang L, et al. Clinical usefulness of right ventricle-pulmonary artery coupling in cardiovascular disease. J Clin Med 2023; 12:2526. |
[17] | Chen X, Zhang P, Lou J, Zhao R, Zhang S, Xie M, et al. Application of an echocardiographic index to characterize right ventricular-pulmonary arterial coupling in heart failure. ESC Heart Fail 2024; 11:1290-1304. |
[18] | Dong Y, Li Y, Song L. Evaluation of right ventricular function in patients with pulmonary arterial hypertension by different right ventricular-pulmonary artery coupling methods. Medicine (Baltimore) 2022; 101:e30873. |
[19] |
Takeuchi M, Igarashi Y, Tomimoto S, Odake M, Hayashi T, Tsukamoto T, et al. Single-beat estimation of the slope of the end-systolic pressure-volume relation in the human left ventricle. Circulation 1991; 83:202-212.
pmid: 1898642 |
[20] |
Schmeißer A, Rauwolf T, Groscheck T, Fischbach K, Kropf S, Luani B, et al. Predictors and prognosis of right ventricular function in pulmonary hypertension due to heart failure with reduced ejection fraction. ESC Heart Fail 2021; 8:2968-2981.
doi: 10.1002/ehf2.13386 pmid: 33934536 |
[21] |
Vanderpool RR, Pinsky MR, Naeije R, Deible C, Kosaraju V, Bunner C, et al. RV-pulmonary arterial coupling predicts outcome in patients referred for pulmonary hypertension. Heart 2015; 101:37-43.
doi: 10.1136/heartjnl-2014-306142 pmid: 25214501 |
[22] | Kremer N, Rako Z, Douschan P, Gall H, Ghofrani HA, Grimminger F, et al. Unmasking right ventricular-arterial uncoupling during fluid challenge in pulmonary hypertension. J Heart Lung Transplant 2022; 41:345-355. |
[23] | Li Q, Zhang M. Echocardiography assessment of right ventricular-pulmonary artery coupling: Validation of surrogates and clinical utilities. Int J Cardiol 2024; 394:131358. |
[24] |
Iacoviello M, Monitillo F, Citarelli G, Leone M, Grande D, Antoncecchi V, et al. Right ventriculo-arterial coupling assessed by two-dimensional strain: A new parameter of right ventricular function independently associated with prognosis in chronic heart failure patients. International Journal of Cardiology 2017; 241:318-321.
doi: S0167-5273(16)33807-4 pmid: 28479093 |
[25] | Nochioka K, Querejeta Roca G, Claggett B, Biering-Sørensen T, Matsushita K, Hung CL, et al. Right ventricular function, right ventricular-pulmonary artery coupling, and heart failure risk in 4 US communities: The atherosclerosis risk in communities (ARIC) study. JAMA Cardiol 2018; 3:939-948. |
[26] | Prins KW, Archer SL, Pritzker M, Rose L, Weir EK, Sharma A, et al. Interleukin-6 is independently associated with right ventricular function in pulmonary arterial hypertension. J Heart Lung Transplant 2018; 37:376-384. |
[27] | Jentzer JC, Anavekar NS, Reddy YNV, Murphree DH, Wiley BM, Oh JK, et al. Right ventricular pulmonary artery coupling and mortality in cardiac intensive care unit patients. J Am Heart Assoc 2021; 10:e019015. |
[28] |
Sanz J, García-Alvarez A, Fernández-Friera L, Nair A, Mirelis JG, Sawit ST, et al. Right ventriculo-arterial coupling in pulmonary hypertension: A magnetic resonance study. Heart 2012; 98:238-243.
doi: 10.1136/heartjnl-2011-300462 pmid: 21917658 |
[29] | Srdanović I, Stefanović M, Milovančev A, Vulin A, Pantić T, Dabović D, et al. Relevance of the TAS'/PASP ratio as a predictor of outcomes in patients with heart failure with a reduced ejection fraction. Life (Basel) 2024; 14:863. |
[30] |
Ishiwata J, Daimon M, Nakanishi K, Sugimoto T, Kawata T, Shinozaki T, et al. Combined evaluation of right ventricular function using echocardiography in non-ischaemic dilated cardiomyopathy. ESC Heart Fail 2021; 8:3947-3956.
doi: 10.1002/ehf2.13519 pmid: 34346188 |
[31] | Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American society of echocardiography and the european association of cardiovascular imaging. J Am Soc Echocardiogr 2015; 28:1-39.e14. |
[32] | Parasca CA, Calin A, Cadil D, Mateescu A, Rosca M, Botezatu SB, et al. Right ventricle to pulmonary artery coupling after transcatheter aortic valve implantation-determinant factors and prognostic impact. Front Cardiovasc Med 2023; 10:1150039. |
[33] | Guazzi M, Bandera F, Pelissero G, Castelvecchio S, Menicanti L, Ghio S, et al. Tricuspid annular plane systolic excursion and pulmonary arterial systolic pressure relationship in heart failure: An index of right ventricular contractile function and prognosis. Am J Physiol Heart Circ Physiol 2013; 305:H1373-1381. |
[34] | Cahill TJ, Pibarot P, Yu X, Babaliaros V, Blanke P, Clavel MA, et al. Impact of right ventricle-pulmonary artery coupling on clinical outcomes in the PARTNER 3 trial. JACC Cardiovasc Interv 2022; 15:1823-1833. |
[35] | Meucci MC, Malara S, Butcher SC, Hirasawa K, van der Kley F, Lombardo A, et al. Evolution and prognostic impact of right ventricular-pulmonary artery coupling after transcatheter aortic valve replacement. JACC Cardiovasc Interv 2023; 16:1612-1621. |
[36] |
Brener MI, Lurz P, Hausleiter J, Rodés-Cabau J, Fam N, Kodali SK, et al. Right ventricular-pulmonary arterial coupling and afterload reserve in patients undergoing transcatheter tricuspid valve repair. J Am Coll Cardiol 2022; 79:448-461.
doi: 10.1016/j.jacc.2021.11.031 pmid: 35115101 |
[37] | Vizzardi E, Gavazzoni M, Sciatti E, Dallapellegrina L, Bernardi N, Raddino R, et al. Right ventricular deformation and right ventricular-arterial coupling in patients with heart failure due to severe aortic stenosis undergoing TAVI: Long-term results. Am J Cardiovasc Dis 2020; 10:150-163. |
[38] | Alonso P, Andrés A, Miró V, Igual B, Sánchez I, Salvador A. Diagnostic power of echocardiographic speckle tracking of the tricuspid annular motion to assess right ventricular dysfunction. Int J Cardiol 2014; 172:e218-219. |
[39] | Beyls C, Yakoub-Agha M, Hermida A, Martin N, Crombet M, Hanquiez T, et al. Prognostic value of a new right ventricular-to-pulmonary artery coupling parameter using right ventricular longitudinal shortening fraction in patients undergoing transcatheter aortic valve replacement: A prospective echocardiography study. J Clin Med 2024; 13:1006. |
[40] | Beyls C, Daumin C, Hermida A, Booz T, Ghesquieres T, Crombet M, et al. Association between the right ventricular longitudinal shortening fraction and mortality in acute respiratory distress syndrome related to covid-19 infection: A prospective study. J Clin Med 2022; 11:2625. |
[41] | Beyls C, Hermida A, Martin N, Peschanski J, Debrigode R, Vialatte A, et al. Prognostic value of right ventricular longitudinal shortening fraction in patients with ST-elevation myocardial infarction: A prospective echocardiography study. Am J Cardiol 2024; 211:79-88. |
[42] | Carluccio E, Biagioli P, Alunni G, Murrone A, Zuchi C, Coiro S, et al. Prognostic value of right ventricular dysfunction in heart failure with reduced ejection fraction: Superiority of longitudinal strain over tricuspid annular plane systolic excursion. Circ Cardiovasc Imaging 2018; 11:e006894. |
[43] | Borovac J A, Glavas D, Susilovic Grabovac Z, Supe Domic D, Stanisic L, D'Amario D, et al. Right ventricular free wall strain and congestive hepatopathy in patients with acute worsening of chronic heart failure: A catstat-hf echo substudy. J Clin Med 2020; 9:1317. |
[44] |
McQuillan BM, Picard MH, Leavitt M, Weyman AE. Clinical correlates and reference intervals for pulmonary artery systolic pressure among echocardiographically normal subjects. Circulation 2001; 104:2797-2802.
doi: 10.1161/hc4801.100076 pmid: 11733397 |
[45] | Douglas PS, Khandheria B, Stainback RF, Weissman NJ, Brindis RG, Patel MR, et al. ACCF/ASE/ACEP/ASNC/SCAI/SCCT/SCMR 2007 appropriateness criteria for transthoracic and transesophageal echocardiography: A report of the American college of cardiology foundation quality strategic directions committee appropriateness criteria working group, American society of echocardiography, American college of emergency physicians, American society of nuclear cardiology, society for cardiovascular angiography and interventions, society of cardiovascular computed tomography, and the society for cardiovascular magnetic resonance endorsed by the American college of chest physicians and the society of critical care medicine. J Am Coll Cardiol 2007; 50:187-204. |
[46] |
Armstrong DW, Tsimiklis G, Matangi MF. Factors influencing the echocardiographic estimate of right ventricular systolic pressure in normal patients and clinically relevant ranges according to age. Can J Cardiol 2010; 26:e35-39.
doi: 10.1016/s0828-282x(10)70004-0 pmid: 20151056 |
[47] |
Ahmed M, Karnakoti S, Abozied O, Kandlakunta S, Younis A, Egbe AC. Prognostic role of tricuspid annular plane systolic excursion/right ventricular systolic pressure ratio in coarctation of aorta. CJC Pediatr Congenit Heart Dis 2023; 2:167-173.
doi: 10.1016/j.cjcpc.2023.05.001 pmid: 37969860 |
[48] |
Tops LF, Prakasa K, Tandri H, Dalal D, Jain R, Dimaano VL, et al. Prevalence and pathophysiologic attributes of ventricular dyssynchrony in arrhythmogenic right ventricular dysplasia/cardiomyopathy. J Am Coll Cardiol 2009; 54:445-451.
doi: 10.1016/j.jacc.2009.04.038 pmid: 19628120 |
[49] | Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, et al. Recommendations for chamber quantification: A report from the American society of echocardiography's guidelines and standards committee and the chamber quantification writing group, developed in conjunction with the European association of echocardiography, a branch of the European society of cardiology. J Am Soc Echocardiogr 2005; 18:1440-1463. |
[50] |
Egbe AC, Kothapalli S, Miranda WR, Pislaru S, Ammash NM, Borlaug BA, et al. Assessment of right ventricular-pulmonary arterial coupling in chronic pulmonary regurgitation. Can J Cardiol 2019; 35:914-922.
doi: S0828-282X(19)30195-3 pmid: 31292091 |
[51] |
Kim D, Park Y, Choi KH, Park TK, Lee JM, Cho YH, et al. Prognostic implication of RV coupling to pulmonary circulation for successful weaning from extracorporeal membrane oxygenation. JACC Cardiovasc Imaging 2021; 14:1523-1531.
doi: 10.1016/j.jcmg.2021.02.018 pmid: 33865793 |
[52] | Gavazzoni M, Badano LP, Cascella A, Heilbron F, Tomaselli M, Caravita S, et al. Clinical value of a novel three-dimensional echocardiography-derived index of right ventricle-pulmonary artery coupling in tricuspid regurgitation. J Am Soc Echocardiogr 2023; 36:1154-1166.e1153. |
[53] | Boulate D, Amsallem M, Kuznetsova T, Zamanian RT, Fadel E, Mercier O, et al. Echocardiographic evaluations of right ventriculo-arterial coupling in experimental and clinical pulmonary hypertension. Physiol Rep 2019; 7:e14322. |
[54] |
Ghio S, Klersy C, Magrini G, D'Armini AM, Scelsi L, Raineri C, et al. Prognostic relevance of the echocardiographic assessment of right ventricular function in patients with idiopathic pulmonary arterial hypertension. International Journal of Cardiology 2010; 140:272-278.
doi: 10.1016/j.ijcard.2008.11.051 pmid: 19070379 |
[55] | Amsallem M, Sweatt AJ, Aymami MC, Kuznetsova T, Selej M, Lu H, et al. Right heart end-systolic remodeling index strongly predicts outcomes in pulmonary arterial hypertension: Comparison with validated models. Circ Cardiovasc Imaging 2017; 10:e005771. |
[56] | Swift AJ, Capener D, Johns C, Hamilton N, Rothman A, Elliot C, et al. Magnetic resonance imaging in the prognostic evaluation of patients with pulmonary arterial hypertension. Am J Respir Crit Care Med 2017; 196:228-239. |
[57] | Truong U, Patel S, Kheyfets V, Dunning J, Fonseca B, Barker AJ, et al. Non-invasive determination by cardiovascular magnetic resonance of right ventricular-vascular coupling in children and adolescents with pulmonary hypertension. J Cardiovasc Magn Reson 2015; 17:81. |
[58] |
Heerdt PM, Singh I, Elassal A, Kheyfets V, Richter MJ, Tello K. Pressure-based estimation of right ventricular ejection fraction. ESC Heart Fail 2022; 9:1436-1443.
doi: 10.1002/ehf2.13839 pmid: 35150211 |
[59] | Singh I, Rahaghi FN, Naeije R, Oliveira RKF, Vanderpool RR, Waxman AB, et al. Dynamic right ventricular-pulmonary arterial uncoupling during maximum incremental exercise in exercise pulmonary hypertension and pulmonary arterial hypertension. Pulm Circ 2019; 9:2045894019862435. |
[60] |
Bellofiore A, Dinges E, Naeije R, Mkrdichian H, Beussink-Nelson L, Bailey M, et al. Reduced haemodynamic coupling and exercise are associated with vascular stiffening in pulmonary arterial hypertension. Heart 2017; 103:421-427.
doi: 10.1136/heartjnl-2016-309906 pmid: 27566296 |
[61] | Ishizaka S, Iwano H, Tsujinaga S, Murayama M, Tsuneta S, Aoyagi H, et al. Determinants of exercise capacity in patients with heart failure without left ventricular hypertrophy. J Cardiol 2023; 81:33-41. |
[62] |
Egbe AC, Miranda WR, Pellikka PA, Pislaru SV, Borlaug BA, Kothapalli S, et al. Right ventricular and pulmonary vascular function indices for risk stratification of patients with pulmonary regurgitation. Congenit Heart Dis 2019; 14:657-664.
doi: 10.1111/chd.12768 pmid: 30957982 |
[63] | Jani V, Konecny F, Shelby A, Kulkarni A, Hammel J, Schuster A, et al. Influence of right ventricular pressure and volume overload on right and left ventricular diastolic function. J Thorac Cardiovasc Surg 2022; 163:e299-e308. |
[64] | Cool CJ, Khalid AF, Sukmadi N, Akbar MR, Setiabudiawan B, Rahayuningsih SE. The association of right ventricular-pulmonary arterial coupling and pulmonary vascular resistance in adult patients with uncorrected atrial septal defect. BMC Cardiovasc Disord 2024; 24:297. |
[65] | Lee SH, Shin YR, Kim DY, Seo J, Cho I, Lee S, et al. Clinical significance of right ventricular-pulmonary arterial coupling in patients with tricuspid regurgitation before closure of atrial septal defect. Front Cardiovasc Med 2022; 9:896711. |
[66] | Joosen RS, Breur J, Wessels JN, Krings GJ, Voskuil M, de Man FS, et al. Right ventricular to pulmonary arterial coupling in patients with repaired tetralogy of fallot: A case series. Eur Heart J Case Rep 2023; 7:ytad583. |
[67] |
Yang Y, Wang Z, Chen Z, Wang X, Zhang L, Li S, et al. Current status and etiology of valvular heart disease in China: A population-based survey. BMC Cardiovascular Disorders 2021; 21:339.
doi: 10.1186/s12872-021-02154-8 pmid: 34256700 |
[68] | Kim SJ, Li MH, Noh CI, Kim SH, Lee CH, Yoon JK. Impact of pulmonary arterial elastance on right ventricular mechanics and exercise capacity in repaired tetralogy of fallot. Korean Circ J 2023; 53:406-417. |
[69] |
Sugiura A, Tanaka T, Kavsur R, Öztürk C, Silaschi M, Goto T, et al. Refining accuracy of RV-PA coupling in patients undergoing transcatheter tricuspid valve treatment. Clin Res Cardiol 2024; 113:177-186.
doi: 10.1007/s00392-023-02339-5 pmid: 38010521 |
[70] |
Fortuni F, Butcher SC, Dietz MF, van der Bijl P, Prihadi EA, De Ferrari GM, et al. Right ventricular-pulmonary arterial coupling in secondary tricuspid regurgitation. Am J Cardiol 2021; 148:138-145.
doi: 10.1016/j.amjcard.2021.02.037 pmid: 33667451 |
[71] | Eleid MF, Padang R, Pislaru SV, Greason KL, Crestanello J, Nkomo VT, et al. Effect of transcatheter aortic valve replacement on right ventricular-pulmonary artery coupling. JACC Cardiovasc Interv 2019; 12:2145-2154. |
[72] |
Oakland H, Joseph P, Naeije R, Elassal A, Cullinan M, Heerdt PM, et al. Arterial load and right ventricular-vascular coupling in pulmonary hypertension. J Appl Physiol (1985) 2021; 131:424-433.
doi: 10.1152/japplphysiol.00204.2021 pmid: 34043473 |
[73] | Rajaratnam A, Rehman S, Sharma P, Singh VK, Saul M, Vanderpool RR, et al. Right ventricular load and contractility in HIV-associated pulmonary hypertension. PLoS One 2021; 16:e0243274. |
[74] | Vicenzi M, Caravita S, Rota I, Casella R, Deboeck G, Beretta L, et al. The added value of right ventricular function normalized for afterload to improve risk stratification of patients with pulmonary arterial hypertension. PLoS One 2022; 17:e0265059. |
[75] | Sharifi Kia D, Kim K, Simon MA. Current understanding of the right ventricle structure and function in pulmonary arterial hypertension. Front Physiol 2021; 12:641310. |
[76] | Duan A, Li X, Jin Q, Zhang Y, Zhao Z, Zhao Q, et al. Prognostic implication of noninvasive right ventricle-to-pulmonary artery coupling in chronic thromboembolic pulmonary hypertension. Ther Adv Chronic Dis 2022; 13:20406223221102803. |
[77] | Jone PN, Schäfer M, Pan Z, Ivy DD. Right ventricular-arterial coupling ratio derived from 3-dimensional echocardiography predicts outcomes in pediatric pulmonary hypertension. Circ Cardiovasc Imaging 2019; 12:e008176. |
[78] | Tello K, Dalmer A, Axmann J, Vanderpool R, Ghofrani HA, Naeije R, et al. Reserve of right ventricular-arterial coupling in the setting of chronic overload. Circulation: Heart Failure 2019; 12:e005512. |
[79] | Anastasiou V, Papazoglou AS, Moysidis DV, Daios S, Barmpagiannos K, Gossios T, et al. The prognostic impact of right ventricular-pulmonary arterial coupling in heart failure: A systematic review and meta-analysis. Heart Fail Rev 2024; 29:13-26. |
[80] | Kobayashi M, Gargani L, Palazzuoli A, Ambrosio G, Bayés-Genis A, Lupon J, et al. Association between right-sided cardiac function and ultrasound-based pulmonary congestion on acutely decompensated heart failure: Findings from a pooled analysis of four cohort studies. Clin Res Cardiol 2021; 110:1181-1192. |
[81] | Naseem M, Alkassas A, Alaarag A. Tricuspid annular plane systolic excursion/pulmonary arterial systolic pressure ratio as a predictor of in-hospital mortality for acute heart failure. BMC Cardiovasc Disord 2022; 22:414. |
[82] |
Nakagawa A, Yasumura Y, Yoshida C, Okumura T, Tateishi J, Seo M, et al. Right ventricular dimension for heart failure with preserved ejection fraction involving right ventricular-vascular uncoupling. CJC Open 2022; 4:929-938.
doi: 10.1016/j.cjco.2022.07.014 pmid: 36444368 |
[83] | Yano M, Egami Y, Ukita K, Kawamura A, Nakamura H, Matsuhiro Y, et al. Clinical impact of right ventricular-pulmonary artery uncoupling on predicting the clinical outcomes after catheter ablation in persistent atrial fibrillation patients. Int J Cardiol Heart Vasc 2022; 39:100991. |
[84] |
Bragança B, Trêpa M, Santos R, Silveira I, Fontes-Oliveira M, Sousa MJ, et al. Echocardiographic assessment of right ventriculo-arterial coupling: Clinical correlates and prognostic impact in heart failure patients undergoing cardiac resynchronization therapy. J Cardiovasc Imaging 2020; 28:109-120.
doi: 10.4250/jcvi.2019.0094 pmid: 32052609 |
[85] | Hussain I, Mohammed SF, Forfia PR, Lewis GD, Borlaug BA, Gallup DS, et al. Impaired right ventricular-pulmonary arterial coupling and effect of sildenafil in heart failure with preserved ejection fraction: An ancillary analysis from the phosphodiesterase-5 inhibition to improve clinical status and exercise capacity in diastolic heart failure (RELAX) trial. Circ Heart Fail 2016; 9:e002729. |
[86] | Brandsma CA, Van den Berge M, Hackett TL, Brusselle G, Timens W. Recent advances in chronic obstructive pulmonary disease pathogenesis: From disease mechanisms to precision medicine. J Pathol 2020; 250:624-635. |
[87] |
Spurzem JR, Rennard SI. Pathogenesis of COPD. Semin Respir Crit Care Med 2005; 26:142-153.
doi: 10.1055/s-2005-869535 pmid: 16088433 |
[88] | Nathan SD, Barbera JA, Gaine SP, Harari S, Martinez FJ, Olschewski H, et al. Pulmonary hypertension in chronic lung disease and hypoxia. Eur Respir J 2019; 53: 1801914. |
[89] | Yogeswaran A, Kuhnert S, Gall H, Faber M, Krauss E, Rako ZA, et al. Relevance of Cor pulmonale in COPD with and without pulmonary hypertension: A retrospective cohort study. Front Cardiovasc Med 2022; 9:826369. |
[90] | Turetz M, Sideris AT, Friedman OA, Triphathi N, Horowitz JM. Epidemiology, pathophysiology, and natural history of pulmonary embolism. Semin Intervent Radiol 2018; 35:92-98. |
[91] | Kerbaul F, By Y, Gariboldi V, Mekkaoui C, Fesler P, Collart F, et al. Acute pulmonary embolism decreases adenosine plasma levels in anesthetized pigs. ISRN Cardiol 2011; 2011:750301. |
[92] | Samaranayake CB, Upham J, Tran K, Howard LS, Nguyen S, Lwin M, et al. Right ventricular functional recovery assessment with stress echocardiography and cardiopulmonary exercise testing after pulmonary embolism: A pilot prospective multicentre study. BMJ Open Respir Res 2023; 10:e001637. |
[93] | Mostafa A, Medhat M, Alhosary H, Amin W. Role of right ventricular-pulmonary arterial coupling assessed by echocardiography to predict adverse outcomes in patients with acute pulmonary embolism. Egypt Heart J 2024; 76:122. |
[94] |
Adamo M, Inciardi RM, Tomasoni D, Dallapellegrina L, Estévez-Loureiro R, Stolfo D, et al. Changes in right ventricular-to-pulmonary artery coupling after transcatheter edge-to-edge repair in secondary mitral regurgitation. JACC Cardiovasc Imaging 2022; 15:2038-2047.
doi: 10.1016/j.jcmg.2022.08.012 pmid: 36481071 |
[95] |
Driggin E, Madhavan MV, Bikdeli B, Chuich T, Laracy J, Biondi-Zoccai G, et al. Cardiovascular considerations for patients, health care workers, and health systems during the COVID-19 pandemic. J Am Coll Cardiol 2020; 75:2352-2371.
doi: S0735-1097(20)34637-4 pmid: 32201335 |
[96] | Coromilas EJ, Kochav S, Goldenthal I, Biviano A, Garan H, Goldbarg S, et al. Worldwide survey of COVID-19-associated arrhythmias. Circ Arrhythm Electrophysiol 2021; 14:e009458. |
[97] |
Tsolaki V, Zakynthinos GE, Karavidas N, Vazgiourakis V, Papanikolaou J, Parisi K, et al. Comprehensive temporal analysis of right ventricular function and pulmonary haemodynamics in mechanically ventilated COVID-19 ARDS patients. Ann Intensive Care 2024; 14:25.
doi: 10.1186/s13613-024-01241-1 pmid: 38345712 |
[98] |
Jani V, Kapoor K, Meyer J, Lu J, Goerlich E, Metkus TS, et al. Unsupervised machine learning demonstrates the prognostic value of TAPSE/PASP ratio among hospitalized patients with COVID-19. Echocardiography 2022; 39:1198-1208.
doi: 10.1111/echo.15432 pmid: 35907784 |
[99] | Sehly A, Jaltotage B, He A, Maiorana A, Ihdayhid AR, Rajwani A, et al. Artificial intelligence in echocardiography: The time is now. Rev Cardiovasc Med 2022; 23:256. |
[100] | Zhu Y, Bao Y, Zheng K, Zhou W, Zhang J, Sun R, et al. Quantitative assessment of right ventricular size and function with multiple parameters from artificial intelligence-based three-dimensional echocardiography: A comparative study with cardiac magnetic resonance. Echocardiography 2022; 39:223-232. |
[101] | Barry T, Farina JM, Chao CJ, Ayoub C, Jeong J, Patel BN, et al. The role of artificial intelligence in echocardiography. J Imaging 2023; 9:50. |
[102] |
O’Donnell C, Sanchez PA, Celestin B, McConnell MV, Haddad F. The echocardiographic evaluation of the right heart: Current and future advances. Current Cardiology Reports 2023; 25:1883-1896.
doi: 10.1007/s11886-023-02001-6 pmid: 38041726 |
[103] |
Narang A, Bae R, Hong H, Thomas Y, Surette S, Cadieu C, et al. Utility of a deep-learning algorithm to guide novices to acquire echocardiograms for limited diagnostic use. JAMA Cardiol 2021; 6:624-632.
doi: 10.1001/jamacardio.2021.0185 pmid: 33599681 |
[104] | Dindane Z, Winkler A, Botan R, Linke A, Sveric K. Evaluating the feasibility of using artificial intelligence for right ventricle function analysis in a routine clinical setting. European Heart Journal- Cardiovascular Imaging 2023;24. |
[1] | Yang Yun, Zhang Xin, Zhang Ruize, Jiang Jingrong, Xie Yuji, Fang Lingyun, Zhang Jing, Xie Mingxing, Wang Jing. Current Status and Progress in Arterial Stiffness Evaluation: A Comprehensive Review [J]. Advanced Ultrasound in Diagnosis and Therapy, 2024, 8(4): 172-182. |
[2] | Chen Anni, Yang Lan, Li Zhenyi, Wang Xinqi, Chen Ya, Jin Lin, Li Zhaojun. Left Ventricular-Arterial Coupling in Cardiovascular Health: Development, Assessment Methods, and Future Directions [J]. Advanced Ultrasound in Diagnosis and Therapy, 2024, 8(4): 159-171. |
[3] | Zhang Xin, Yang Yun, Zhang Ruize, Zhang Linyue, Xie Yuji, Wu Wenqian, Zhang Jing, Lv Qing, Wang Jing, Xie Mingxing. Noninvasive Evaluation of Left Ventricular-Arterial Coupling: Methodologies and Clinical Relevance [J]. Advanced Ultrasound in Diagnosis and Therapy, 2024, 8(4): 149-158. |
[4] | Li Zhenyi, Chen Ya, Wang Xinqi, Yang Lan, Chen Anni, Li Zhaojun, Jin Lin. Left and Right Ventricular Interaction: Insight from Echocardiography Imaging [J]. Advanced Ultrasound in Diagnosis and Therapy, 2024, 8(4): 195-204. |
[5] | Junrong Hong, MD, Pingyang Zhang, MD, PhD, Mengyao Fei, MD, Lingling Wang, MD. A Study on Left Atrial Function in Patients with Essential Hypertension Using Four-Dimensional Echocardiography [J]. Advanced Ultrasound in Diagnosis and Therapy, 2024, 8(2): 64-73. |
[6] | Rifei Li, MM, Yuanmei Zhang, MM, Chengkai Zhang, MM, Xuenian Huang, MM, Shangwei Ding, MD. Contrast Echocardiography Evaluation of Microcirculation of Myocardial Infarction Caused by Takotsubo Syndrome: Case Report and Literature Review [J]. Advanced Ultrasound in Diagnosis and Therapy, 2021, 5(3): 258-261. |
[7] | Jianping Xu, MS, Faping Cui, MS, Shuixiu Dou, MS, Jiafu Ou, MD. Echocardiography of Marfan's Syndrome Patient with New Gene Mutation of FBN1 with 13-year Follow-up [J]. Advanced Ultrasound in Diagnosis and Therapy, 2021, 5(3): 249-253. |
[8] | Xiaoxue Chen, MD, Shaoling Yang, PhD, Qianqian He, MD, Yin Wang, PhD, Linyan Fan, MD, Fengling Wang, MD, Kun Zhao, MD, Jing Hu, MD. Automated Measurements of Left Ventricular Ejection Fraction and Volumes Using the EchoPAC System [J]. Advanced Ultrasound in Diagnosis and Therapy, 2021, 5(3): 226-235. |
[9] | Yichen Qu, MD, Ya Yang, MD, Jinjie Xie, MD, Rongjuan Li, MD, Han Zhang, MD, Li Song, MD, Yueli Wang, MD, Jing Li, MD. Incomplete Shone’s Complex with BAV and VSD in Adult Diagnosed by Echocardiography [J]. Advanced Ultrasound in Diagnosis and Therapy, 2021, 5(2): 106-108. |
[10] | Ting Sun, MD, Guoliang Lu, MD, Jian Fang, MD, Shaobo Xie, MD. Silent Embolization Following Hybrid Device Closure of Atrial Septal Defect [J]. Advanced Ultrasound in Diagnosis and Therapy, 2020, 4(4): 352-353. |
[11] | Ting Sun, MD, Guoliang Lu, MD, Jian Fang, MD, Shaobo Xie, MD. Transthoracic Echocardiography for Evaluation of an Intrapulmonary Artery Mass [J]. Advanced Ultrasound in Diagnosis and Therapy, 2020, 4(4): 329-334. |
[12] | Luwen Liu, MS, Shaobo Duan, MD, Yaqiong Li, PhD, Ruiqing Liu, MD, Yuejin Wu, MS, Lianzhong Zhang, MD. Development Status and Prospect of Remote Diagnosis and Treatment of Echocardiography Worldwide [J]. Advanced Ultrasound in Diagnosis and Therapy, 2020, 4(4): 303-307. |
[13] | Huan Cen, MS, Jinhua Li, MD, Bijing Li, MS, Pengtao Sun, MS. Two- and Three-Dimensional Echocardiography for Primary Cardiac Lymphomas: A Case Report and Literature Review [J]. Advanced Ultrasound in Diagnosis and Therapy, 2020, 4(3): 255-259. |
[14] | Li Ji, MD, Yuman Li, MD, PhD, Li Zhang, MD, PhD, Yali Yang, MD, PhD, Mingxing Xie, MD, PhD. Aorto-Left Ventricle Fistula in Aortic Valve Endocarditis Found to Mimic Valsalva Sinus Aneurysm Rupture into the Left Ventricle: A case study [J]. Advanced Ultrasound in Diagnosis and Therapy, 2020, 4(1): 18-20. |
[15] | Xingyi Yang, Zhaojun Li, Xianghong Luo. A Lesson from Left Atrial Mass [J]. Advanced Ultrasound in Diagnosis and Therapy, 2018, 2(3): 181-182. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Share: WeChat
Copyright ©2018 Advanced Ultrasound in Diagnosis and Therapy
|
Advanced Ultrasound in Diagnosis and Therapy (AUDT) a>
is licensed under a Creative Commons Attribution 4.0 International License a>.