[1] | Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68:394-424. | [2] | Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RGPM, Granton P, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 2012; 48:441-6. | [3] | Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology 2016; 278:563-77. | [4] | Valdora F, Houssami N, Rossi F, Calabrese M, Tagliafico AS. Rapid review: radiomics and breast cancer. Breast Cancer Research and Treatment 2018; 169:217-29. | [5] | Crivelli P, Ledda RE, Parascandolo N, Fara A, Soro D, Conti M. A new challenge for radiologists: radiomics in breast cancer. Biomed Res Int 2018; 2018:6120703. | [6] | Kumar V, Gu Y, Basu S, Berglund A, Eschrich SA, Schabath MB, et al. Radiomics: the process and the challenges. Magn Reson Imaging 2012; 30:1234-48. | [7] | Liu T, Li J, Hu Y, Yu J, Guo Y, Wang Y, et al. Feasibility analysis of predicting expression of estrogen receptor in breast cancer based on radiomics. J Biomedical Engineering 2017; 34:597-601. | [8] | Li JW, Shi ZT, Guo Y, Hu YZ, Qiao MY, Yu JH, et al. Value of ultrasound radiomics analysis in predicting expression of hormone receptors in invasive breast carcinoma. Oncoradiology 2017; 26:128-35. | [9] | Guo Y, Hu Y, Qiao M, Wang Y, Yu J, Li J, et al. Radiomics analysis on ultrasound for prediction of biologic behavior in breast invasive ductal carcinoma. Clin Breast Cancer 2018; 18:e335-e344. | [10] | Li JW, Fang Z, Zhou J, Tong YY, Shi ZT, Chang C, et al. The association between molecular biomarkers and ultrasonographic radiomics features for triple negative invasive breast carcinoma. Chin J Ultrasonography 2019; 28:137-43. | [11] | Liu BH, Jiang F, Yan N, Ji WY, Liu YH, Yao AL, et al. Clinical study on correlation between breast cancer hormone receptor expression and ultrasound radiomics. J Clin Ultras Med 2019; 21:834-6. | [12] | Zhang Q, Xiao Y, Suo J, Shi J, Yu J, Guo Y, et al. Sonoelastomics for breast tumor classification: a radiomics approach with clustering-based feature selection on sonoelastography. Ultrasound Med Biol 2017; 43:1058-69. | [13] | Zhou Y, Xu J, Liu Q, Li C, Liu Z, Wang M, et al. A radiomics approach with CNN for shear-wave elastography breast tumor classification. IEEE Trans Biomed Eng 2018; 65:1935-42. | [14] | Lee SE, Han K, Kwak JY, Lee E, Kim EK. Radiomics of US texture features in differential diagnosis between triple-negative breast cancer and fibroadenoma. Sci Rep 2018; 8:13546. | [15] | Luo WQ, Huang QX, Huang XW, Hu HT, Zeng FQ, Wang W. Predicting breast cancer in breast imaging reporting and data system (BI-RADS) ultrasound category 4 or 5 lesions: a nomogram combining radiomics and BI-RADS. Sci Rep 2019; 9:11921. | [16] | Fleury E, Marcomini K. Performance of machine learning software to classify breast lesions using BI-RADS radiomic features on ultrasound images. Eur Radiol Exp 2019; 3:34. | [17] | Pathak M, Deo SV, Dwivedi SN, Sreenivas V, Thakur B, Julka PK, et al. Role of neoadjuvant chemotherapy in breast cancer patients: systematic review and meta-analysis. Indian J Med Paediatr Oncol 2019; 40:48-62. | [18] | Luangdilok S, Samarnthai N, Korphaisarn K. Association between pathological complete response and outcome following neoadjuvant chemotherapy in locally advanced breast cancer patients. J Breast Cancer 2014; 17:376-85. | [19] | Li MY, Li B, Luo J, Liang JY, Pan FS, Zheng YL, et al. Ultrasound-- based radiomics model in predicting efficacy of neoadjuvant chemotherapy in breast cancer. Chin J Med Imaging Technol 2019; 35:1331-5. | [20] | Suo J, Zhang Q, Chang W, Shi J, Yan Z, Chen M. Evaluation of axillary lymph node metastasis by using radiomics of dual-modal ultrasound composed of elastography and B-mode. Chin J Med Instrument 2017; 41:313-316. | [21] | Yu FH, Wang JX, Ye XH, Deng J, Hang J, Yang B. Ultrasound-based radiomics nomogram: a potential biomarker to predict axillary lymph node metastasis in early-stage invasive breast cancer. Eur J Radiol 2019; 119:108658. | [22] | Sun Q, Lin X, Zhao Y, Li L, Yan K, Liang D, et al. Deep learning vs. radiomics for predicting axillary lymph node metastasis of breast cancer using ultrasound images: don't forget the peritumoral region. Front Oncol 2020; 10:53. | [23] | Theek B, Opacic T, Magnuska Z, Lammers T, Kiessling F. Radiomic analysis of contrast-enhanced ultrasound data. Sci Rep 2018; 8:11359. |
|