Advanced Ultrasound in Diagnosis and Therapy ›› 2023, Vol. 7 ›› Issue (4): 313-320.doi: 10.37015/AUDT.2023.230049
• Review Articles • Previous Articles Next Articles
Yang Qi, MDa,b,1, Dengsheng Sun, MDa,1, Linyao Wang, MDa, Jie Yu, MDb,*(), Ping Liang, MDb,*()
Received:
2023-06-05
Revised:
2023-08-07
Accepted:
2023-10-04
Online:
2023-12-30
Published:
2023-10-23
Contact:
Department of Interventional Ultrasound, Fifth Medical Center of Chinese PLA General Hospital, 100 West Fourth Ring Middle Road, Beijing, 100039, China. e-mail: About author:
1 Yang Qi and Dengsheng Sun contributed equally to this study.
Yang Qi, MD, Dengsheng Sun, MD, Linyao Wang, MD, Jie Yu, MD, Ping Liang, MD. State-of-the-Art and Development Trend of Interventional Ultrasound in China. Advanced Ultrasound in Diagnosis and Therapy, 2023, 7(4): 313-320.
[1] | Chen MH, Liang P, Wang JR. Chinese interventional ultrasound. 1st ed.ed. Beijing: People’s Medical Publishing House 2017: 1. |
[2] |
Grant EG, Richardson JD, Smirniotopoulos JG, Jacobs NM. Fine-needle biopsy directed by real-time sonography: technique and accuracy. Am J Roentgenol 1983; 141:29-32.
pmid: 6602522 |
[3] |
Goldberg BB, Pollack HM. Ultrasonic aspiration transducer. Radiology 1972; 102:187-189.
pmid: 5008144 |
[4] |
Holm HH, Kristensen JK, Rasmussen SN, Northeved A, Barlebo H. Ultrasound as a guide in percutaneous puncture technique. Ultrasonics 1972; 10:83-86.
pmid: 5017591 |
[5] |
Saitoh M, Watanabe H, Ohe H, Tanaka S, Itakura Y, Date S. Ultrasonic real-time guidance for percutaneous puncture. J Clin Ultrasound 1979; 7:269-272.
pmid: 112114 |
[6] |
Sugiura N, Takara K, Ohto M. Percutaneous intratumoral injection of ethanol under ultrasound imaging for treatment of small hepatocellular carcinoma. Acta Hepatol Jpn 1983; 24:920-923.
doi: 10.2957/kanzo.24.920 |
[7] |
Goldberg S N, Gazelle GS, Solbiati L, Rittman WJ, Mueller PR. Radiofrequency tissue ablation: increased lesion diameter with a perfusion electrode. Acad Radiol 1996; 3:636-644.
pmid: 8796727 |
[8] |
Wang L, Xu J, Yu J, Liang P. Review of clinical tumor ablation advance in Asia. Int J Hyperthermia 2021; 38:1639-1649.
doi: 10.1080/02656736.2021.1983037 |
[9] | Wang Z, Liu M, Zhang DZ, Wu SS, Hong ZX, He GB, et al. Microwave ablation versus laparoscopic resection as first-line therapy for solitary 3-5-cm HCC. Hepatology 2022; 76:66-77. |
[10] |
Zheng L, Dou JP, Han ZY, Liu FY, Yu J, Cheng ZG, et al. Microwave ablation for papillary thyroid microcarcinoma with and without US-detected capsule invasion: A multicenter prospective cohort study. Radiology 2023; 307:e220661.
doi: 10.1148/radiol.220661 |
[11] |
Huang J, Zhang J, Wang Y, Kong W, Xue W, Liu DM, et al. Comparing zero ischemia laparoscopic radio frequency ablation assisted tumor enucleation and laparoscopic partial nephrectomy for clinical T1a renal tumor: A randomized clinical trial. J Urol 2016; 195:1677-1683.
doi: 10.1016/j.juro.2015.12.115 pmid: 26905020 |
[12] |
Wang H, Xue W, Yan W, Yin L, Dong B, He B, et al. Extended focal ablation of localized prostate cancer with high-frequency irreversible electroporation: A nonrandomized controlled trial. JAMA Surg 2022; 157:693-700.
doi: 10.1001/jamasurg.2022.2230 pmid: 35793110 |
[13] |
Gou Q, Wu L, Cui W, Mo Z, Zeng D, Gan L, et al. Stent placement combined with intraluminal radiofrequency ablation and hepatic arterial infusion chemotherapy for advanced biliary tract cancers with biliary obstruction: a multicentre, retrospective, controlled study. Eur Radiol 2021; 31:5851-5862.
doi: 10.1007/s00330-021-07716-0 pmid: 33585991 |
[14] | Zhang YQ, Wu YL, Feng Y, Zhou YX. A clinical study on microwave ablation in combination with chemotherapy in treating peripheral IIIB-IV non-small cell lung cancer. Cancer Biother Radiopharm 2022; 37:141-146. |
[15] |
Wu F, Wang ZB, Cao YD, Chen JB, Zou JZ, Zhu H. A randomised clinical trial of high-intensity focused ultrasound ablation for the treatment of patients with localised breast cancer. Br J Cancer 2003; 89:2227-2233.
doi: 10.1038/sj.bjc.6601411 |
[16] |
Yang Q, Li H, Chen BH, He GZ, Wu XP, Wang LX, et al. Ultrasound-guided percutaneous microwave ablation for 755 benign breast lesions: a prospective multicenter study. Eur Radiol 2020; 30:5029-5038.
doi: 10.1007/s00330-020-06868-9 pmid: 32356159 |
[17] |
Ren C, Liang P, Yu XL, Cheng ZG, Han ZY, Yu J. Percutaneous microwave ablation of adrenal tumours under ultrasound guidance in 33 patients with 35 tumours: A single-centre experience. Int J Hyperthermia 2016; 32:517-523.
doi: 10.3109/02656736.2016.1164905 |
[18] | Dong B. Ultrasonically guided percutaneous fine needle biopsy in the diagnosis of pancreatic tumors. Zhonghua Nei Ke Za Zhi 1982; 21:716-718,775-776. |
[19] | Xu Z, Chen M, Wu M. Diagnosis value of B mode ultrasound for primary liver cancer. Chinese Journal of Internal Digestion 1982; 2:223-226. |
[20] | Chen M, Liang P. Guidelines for the application of interventional ultrasound. Beijing: People's Medical Publishing House 2014. |
[21] |
Dahiya DS, Al-Haddad M, Chandan S, Gangwani MK, Azizi M, Mohan B, et al. Artificial intelligence in endoscopic ultrasound for pancreatic cancer: Where are we now and what does the future entail? J Clin Med 2022; 11:7476.
doi: 10.3390/jcm11247476 |
[22] |
Wang K, Lu X, Zhou H, Gao YY, Zheng J, Tong MH, et al. Deep learning Radiomics of shear wave elastography significantly improved diagnostic performance for assessing liver fibrosis in chronic hepatitis B: a prospective multicentre study. Gut 2019; 68:729-741.
doi: 10.1136/gutjnl-2018-316204 pmid: 29730602 |
[23] |
Liu F, Liu D, Wang K, Xie XH, Su LY, Kuang M, et al. Deep learning Radiomics based on contrast-enhanced ultrasound might optimize curative treatments for very-early or early-stage hepatocellular carcinoma patients. Liver Cancer 2020; 9:397-413.
doi: 10.1159/000505694 pmid: 32999867 |
[24] |
Xu HL, Gong TT, Liu FH, Chen HY, Xiao Q, Hou Y, et al. Artificial intelligence performance in image-based ovarian cancer identification: A systematic review and meta-analysis. EClinicalMedicine 2022; 53:101662.
doi: 10.1016/j.eclinm.2022.101662 |
[25] |
Sun R, Limkin EJ, Vakalopoulou M, Dercle L, Champiat S, Han SR, et al. A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study. Lancet Oncol 2018; 19:1180-1191.
doi: S1470-2045(18)30413-3 pmid: 30120041 |
[26] |
Wang X, Xie T, Luo J, Zhou Z, Yu X, Guo X. Radiomics predicts the prognosis of patients with locally advanced breast cancer by reflecting the heterogeneity of tumor cells and the tumor microenvironment. Breast Cancer Res 2022; 24:20.
doi: 10.1186/s13058-022-01516-0 pmid: 35292076 |
[27] |
Huang W, Jiang Y, Xiong W, Sun Z, Chen C, Yuan Q, et al. Noninvasive imaging of the tumor immune microenvironment correlates with response to immunotherapy in gastric cancer. Nat Commun 2022; 13:5095.
doi: 10.1038/s41467-022-32816-w pmid: 36042205 |
[28] |
Su GH, Xiao Y, Jiang L, Zheng R, Wang H, Chen Y, et al. Radiomics features for assessing tumor-infiltrating lymphocytes correlate with molecular traits of triple-negative breast cancer. J Transl Med 2022; 20:471.
doi: 10.1186/s12967-022-03688-x |
[29] |
Kang W, Qiu X, Luo Y, Luo J, Liu Y, Xi J, et al. Application of radiomics-based multiomics combinations in the tumor microenvironment and cancer prognosis. J Transl Med 2023; 21:598.
doi: 10.1186/s12967-023-04437-4 |
[30] |
Hu HT, Wang W, Chen LD, Ruan S, Chen S, Li X, et al. Artificial intelligence assists identifying malignant versus benign liver lesions using contrast-enhanced ultrasound. J Gastroenterol Hepatol 2021; 36:2875-2883.
doi: 10.1111/jgh.v36.10 |
[31] |
Guo HL, Lu XZ, Hu HT, Ruan S, Zheng X, Xie X, et al. Contrast-enhanced ultrasound-based nomogram: A potential predictor of individually postoperative early recurrence for patients with combined hepatocellular-cholangiocarcinoma. J Ultrasound Med 2022; 41:1925-1938.
doi: 10.1002/jum.v41.8 |
[32] |
Chen F, Liu J, Wan P, Liao H, Kong W. Immunohistochemical index prediction of breast tumor based on multi-dimension features in contrast-enhanced ultrasound. Med Biol Eng Comput 2020; 58:1285-1295.
doi: 10.1007/s11517-020-02164-2 pmid: 32232794 |
[33] |
Huang J, Xie X, Wu H, Zhang X, Zheng Y, Xie X, et al. Development and validation of a combined nomogram model based on deep learning contrast-enhanced ultrasound and clinical factors to predict preoperative aggressiveness in pancreatic neuroendocrine neoplasms. Eur Radiol 2022; 32:7965-7975.
doi: 10.1007/s00330-022-08703-9 pmid: 35389050 |
[34] | Long Y, Xu E, Zeng Q, Ju J, Huang Q, Liang P, et al. Intra-procedural real-time ultrasound fusion imaging improves the therapeutic effect and safety of liver tumor ablation in difficult cases. J Cancer Res 2020; 10:2174-2184. |
[35] | Xu E, Li K, Long Y, Luo L, Zeng Q, Tan L, et al. Intra-procedural CT/MR-ultrasound fusion imaging helps to improve outcomes of thermal ablation for hepatocellular carcinoma: Results in 502 nodules. Ultraschall Med 2021; 42:e9-e19. |
[36] |
Gu JH, Zhao QY, He C, Ye Z, Xu M, Jiang T. Fusion imaging-guided radiofrequency ablation for residual hepatocellular carcinoma invisible on ultrasound after transcatheter arterial chemoembolization. Int J Hyperthermia 2021; 38:1092-1098.
doi: 10.1080/02656736.2021.1943545 |
[37] | Huang Q, Zeng Q, Long Y, Tan L, Zheng R, Xu E, et al. Fusion imaging techniques and contrast-enhanced ultrasound for thermal ablation of hepatocellular carcinoma-A prospective randomized controlled trial. Int J Hyperthermia 2019; 36:1207-1215. |
[38] |
Wang XL, Li K, Su ZZ, Huang ZP, Wang P, Zheng RQ. Assessment of radiofrequency ablation margin by MRI-MRI image fusion in hepatocellular carcinoma. World J Gastroenterol 2015; 21:5345-5351.
doi: 10.3748/wjg.v21.i17.5345 |
[39] |
Ding WZ, Liu S, Liu F, Cheng Z, Yu X, Han Z, et al. Are all local tumour progressions of HCC related to thermal ablation? A study of the causes and classification of local tumour progression. Eur Radiol 2022; 32:8518-8526.
doi: 10.1007/s00330-022-08913-1 |
[40] |
Hu Y, Qi E, Liu F, Lu Y, Tan S, Sun Y, et al. The application of a three-dimensional visualized seed planning and navigation system in 125I seed implantation for pancreatic cancer. Onco Targets Ther 2018; 11:619-627.
doi: 10.2147/OTT |
[41] | An C, Li X, Zhang M, Yang J, Cheng Z, Yu X, et al. 3D visualization ablation planning system assisted microwave ablation for hepatocellular carcinoma (Diameter >3): A precise clinical application. BMC Cancer 2020;20:44. |
[42] |
Li X, An C, Liu F, Cheng Z, Han Z, Yu X, et al. The value of 3D visualization operative planning system in ultrasound-guided percutaneous microwave ablation for large hepatic hemangiomas: A clinical comparative study. BMC Cancer 2019; 19:550.
doi: 10.1186/s12885-019-5682-5 pmid: 31174503 |
[43] | Boctor EM, Fischer G, Choti MA, Fichtinger G, Taylor RH. A Dual-armed robotic system for intraoperative ultrasound guided hepatic ablative therapy: A prospective study. IEEE International Conference on Robotics and Automation 2004: 2517-2522. |
[44] | Liu P, Qin J, Duan B, Wang Q, Tan X, Zhao B, et al. Overlapping radiofrequency ablation planning and robot-assisted needle insertion for large liver tumors. Int J Med Robot 2019; 15:e1952. |
[45] |
Li D, Cheng Z, Chen G, Liu F, Wu W, Yu J, Gu Y, et al. A multimodality imaging-compatible insertion robot with a respiratory motion calibration module designed for ablation of liver tumors: A preclinical study. Int J Hyperthermia 2018; 34:1194-1201.
doi: 10.1080/02656736.2018.1456680 |
[46] |
Lan M, Zhu L, Wang Y, Shen D, Fang K, Liu Y, et al. Multifunctional nanobubbles carrying indocyanine green and paclitaxel for molecular imaging and the treatment of prostate cancer. J Nanobiotechnology 2020; 18:121.
doi: 10.1186/s12951-020-00650-1 |
[47] |
Li M, Luo H, Zhang W, He K, Chen Y, Liu J, et al. Phase-shift, targeted nanoparticles for ultrasound molecular imaging by low intensity focused ultrasound irradiation. Int J Nanomedicine 2018; 13:3907-3920.
doi: 10.2147/IJN |
[48] |
Wang Y, Lan M, Shen D, Fang K, Zhu L, Liu Y, et al. Targeted nanobubbles carrying indocyanine green for ultrasound, photoacoustic and fluorescence imaging of prostate cancer. Int J Nanomedicine 2020; 15:4289-4309.
doi: 10.2147/IJN.S243548 |
[49] |
Zhu L, Wang L, Liu Y, Xu D, Fang K, Guo Y. CAIX aptamer-functionalized targeted nanobubbles for ultrasound molecular imaging of various tumors. Int J Nanomedicine 2018; 13:6481-6495.
doi: 10.2147/IJN |
[50] |
Feng Y, Hao Y, Wang Y, Song W, Zhang S, Ni D, et al. Ultrasound molecular imaging of bladder cancer via extradomain B Fibronectin-targeted biosynthetic GVs. Int J Nanomedicine 2023; 18:4871-4884.
doi: 10.2147/IJN.S412422 |
[51] |
Hao Y, Luo J, Wang Y, Li Z, Wang X, Yan F. Ultrasound molecular imaging of p32 protein translocation for evaluation of tumor metastasis. Biomaterials 2023; 293:121974.
doi: 10.1016/j.biomaterials.2022.121974 |
[52] | Zhong J, Su M, Jiang Y, Huang L, Chen Y, Huang Z, et al. VEGFR2 targeted microbubble-based ultrasound molecular imaging improving the diagnostic sensitivity of microinvasive cervical cancer. Nanobiotechnology 2023; 21:220. |
[53] | Hao Y, Li Z, Luo J, Li L, Yan F. Ultrasound molecular imaging of epithelial mesenchymal transition for evaluating tumor metastatic potential via targeted biosynthetic gas vesicles. Small 2023; 19:e2207940. |
[54] |
Xu L, Du J, Wan C, Zhang Y, Xie S, Li H, et al. Ultrasound molecular imaging of breast cancer in MCF-7 orthotopic mice using gold nanoshelled poly (lactic-co-glycolic acid) nanocapsules: A novel dual-targeted ultrasound contrast agent. Int J Nanomedicine 2018; 13:1791-1807.
doi: 10.2147/IJN |
[55] |
Luo W, Wen G, Yang L, Tang J, Wang J, Wang J, et al. Dual-targeted and pH-sensitive doxorubicin prodrug-microbubble complex with ultrasound for tumor treatment. Theranostics 2017; 7:452-465.
doi: 10.7150/thno.16677 pmid: 28255342 |
[56] |
Liu Y, Wang Z, Liu Y, Zhu G, Jacobson O, Fu X, et al. Suppressing nanoparticle-mononuclear phagocyte system interactions of two-dimensional gold nanorings for improved tumor accumulation and photothermal ablation of tumors. ACS Nano 2017; 11:10539-10548.
doi: 10.1021/acsnano.7b05908 pmid: 28953351 |
[57] |
Hu Z, Wang S, Dai Z, Zhang H, Zheng X. A novel theranostic nano-platform (PB@FePt-HA-g-PEG) for tumor chemodynamic-photothermal co-therapy and triple-modal imaging (MR/CT/PI) diagnosis. J Mater Chem B 2020; 8:5351-5360.
doi: 10.1039/d0tb00708k pmid: 32458958 |
[58] |
Yang Z, Zhu Y, Dong Z, Li W, Yang N, Wang X, et al. Tumor-killing nanoreactors fueled by tumor debris can enhance radiofrequency ablation therapy and boost antitumor immune responses. Nat Commun 2021; 12:4299.
doi: 10.1038/s41467-021-24604-9 pmid: 34262038 |
[59] |
Xiong J, Wu M, Chen J, Liu Y, Chen Y, Fan G, et al. Cancer-erythrocyte hybrid membrane-camouflaged magnetic nanoparticles with enhanced photothermal-immunotherapy for ovarian cancer. ACS Nano 2021; 15:19756-19770.
doi: 10.1021/acsnano.1c07180 pmid: 34860006 |
[60] |
Long D, Liu T, Tan L, Shi H, Liang P, Tang S, et al. Multisynergistic platform for tumor therapy by mild microwave irradiation-activated chemotherapy and enhanced ablation. ACS Nano 2016; 10:9516-9528.
doi: 10.1021/acsnano.6b04749 pmid: 27689440 |
[61] |
Hou L, Tian C, Yan Y, Zhang L, Zhang H, Zhang Z. Manganese-based nanoactivator optimizes cancer immunotherapy via enhancing innate immunity. ACS Nano 2020; 14:3927-3940.
doi: 10.1021/acsnano.9b06111 |
[62] |
Pan J, Hu P, Guo Y, Hao J, Ni D, Xu Y, et al. Combined magnetic hyperthermia and immune therapy for primary and metastatic tumor treatments. ACS Nano 2020; 14:1033-1044.
doi: 10.1021/acsnano.9b08550 pmid: 31935064 |
[63] |
Feng L, Xie R, Wang C, Gai SM He F, Yang D, et al. Magnetic targeting, tumor microenvironment-responsive intelligent nanocatalysts for enhanced tumor ablation. ACS Nano 2018; 12: 11000-11012.
doi: 10.1021/acsnano.8b05042 pmid: 30339353 |
[64] |
Yu X, Gao D, Gao L, Lai J, Zhang C, Zhao Y, et al. Inhibiting metastasis and preventing tumor relapse by triggering host immunity with tumor-targeted photodynamic therapy using photosensitizer-loaded functional nanographenes. ACS Nano 2017; 11:10147-10158.
doi: 10.1021/acsnano.7b04736 pmid: 28901740 |
[65] |
Zhu A, Miao K, Deng Y, Ke H, He H, Yang T, et al. Dually pH/reduction-responsive vesicles for ultrahigh-contrast fluorescence imaging and thermo-chemotherapy-synergized tumor ablation. ACS Nano 2015; 9:7874-7885.
doi: 10.1021/acsnano.5b02843 pmid: 26181349 |
[66] |
Hou Q, Zhang K, Chen S, Chen J, Zhang Y, Gong N, et al. Physical & chemical microwave ablation (MWA) enabled by nonionic MWA nanosensitizers repress incomplete MWA-arised liver tumor recurrence. ACS Nano 2022; 16:5704-5718.
doi: 10.1021/acsnano.1c10714 |
[67] |
Han X, Wang R, Xu J, Chen Q, Liang C, Chen J, et al. In situ thermal ablation of tumors in combination with nano-adjuvant and immune checkpoint blockade to inhibit cancer metastasis and recurrence. Biomaterials 2019; 224:119490.
doi: 10.1016/j.biomaterials.2019.119490 |
[1] | Huihui Chai, MS, Xiaowan Bo, MD, Lehang Guo, MD, Chengzhong Peng, MD. Experience and Enlightenment of Handheld Ultrasound Applications in Multiple Scenarios Based on 5G Technology [J]. Advanced Ultrasound in Diagnosis and Therapy, 2023, 7(4): 356-365. |
[2] | Keyan Li, MD, Ye Peng, MD, Yingying Chen, MD, Zhaoming Zhong, MD, Yulong Ma, MD, Tao Yao, MD, Lihai Zhang, MD, Faqin Lv, MD. Robot-assisted Teleultrasound-guided Hemostasis and Hematoma Catheterization and Drainage for Osteoporosis Pelvic Fracture with Giant Hematoma and Active Bleeding [J]. Advanced Ultrasound in Diagnosis and Therapy, 2023, 7(4): 416-419. |
[3] | Enze Qu, MD, Xinling Zhang, MD. Advanced Application of Artificial Intelligence for Pelvic Floor Ultrasound in Diagnosis and Treatment [J]. Advanced Ultrasound in Diagnosis and Therapy, 2023, 7(2): 114-121. |
[4] | Tianxiang Li, BS, Fei Ji, BS, Ruina Zhao, MD, Huazhen Liu, MD, Meng Yang, MD. Advances in the Research of Ultrasound and Artificial Intelligence in Neuromuscular Disease [J]. Advanced Ultrasound in Diagnosis and Therapy, 2023, 7(2): 122-129. |
[5] | Rui Chen, MM, Fangqi Guo, MM, Jia Guo, MD, Jiaqi Zhao, MD. Application and Prospect of AI and ABVS-based in Breast Ultrasound Diagnosis [J]. Advanced Ultrasound in Diagnosis and Therapy, 2023, 7(2): 130-135. |
[6] | Cancan Cui, MD, Zhaojun Li, PhD, Yanping Lin, PhD. Advances in Intelligent Segmentation and 3D/4D Reconstruction of Carotid Ultrasound Imaging [J]. Advanced Ultrasound in Diagnosis and Therapy, 2023, 7(2): 140-151. |
[7] | Wenjun Zhang, MD, Mi Zhou, PhD, Qingguo Meng, MD, Lin Zhang, MS, Xin Liu, MS, Paul Liu, PhD, Dong Liu, PhD. Rapid Screening of Carotid Plaque in Cloud Handheld Ultrasound System Based on 5G and AI Technology [J]. Advanced Ultrasound in Diagnosis and Therapy, 2023, 7(2): 152-157. |
[8] | Tairui Zhang, BS, Linxue Qian, MD. ChatGPT Related Technology and Its Applications in the Medical Field [J]. Advanced Ultrasound in Diagnosis and Therapy, 2023, 7(2): 158-171. |
[9] | Mofan Li, Yongyue Zhang, MM, Yang Sun, MM, Ligang Cui, PhD, Shumin Wang, PhD. AI-based ChatGPT Impact on Medical Writing and Publication [J]. Advanced Ultrasound in Diagnosis and Therapy, 2023, 7(2): 188-192. |
[10] | Won-Chul Bang, PhD, Vice President, Yeong Kyeong Seong, PhD, Jinyong Lee. The Impact of Deep Learning on Ultrasound in Diagnosis and Therapy: Enhancing Clinical Decision Support, Workflow Efficiency, Quantification, Image Registration, and Real-time Assistance [J]. Advanced Ultrasound in Diagnosis and Therapy, 2023, 7(2): 204-216. |
[11] | Siyi Xun, MA, Wei Ke, PhD, Mingfu Jiang, MA, Huachao Chen, BA, Haoming Chen, BA, Chantong Lam, PhD, Ligang Cui, MD, Tao Tan, PhD. Current Status, Prospect and Bottleneck of Ultrasound AI Development: A Systemic Review [J]. Advanced Ultrasound in Diagnosis and Therapy, 2023, 7(2): 61-72. |
[12] | Wenjia Guo, MM, Shengli Li, MM, Xing Yu, MD, Huaxuan Wen, BM, Ying Yuan, MM, Xia Yang, MM. Artificial Intelligence in Prenatal Ultrasound: Clinical Application and Prospect [J]. Advanced Ultrasound in Diagnosis and Therapy, 2023, 7(2): 82-90. |
[13] | Yaoting Wang, MD, Huihui Chai, MD, Ruizhong Ye, MD, Jingzhi Li, MD, PhD, Ji-Bin Liu, MD, Chen Lin, Chengzhong Peng, MD. Point-of-Care Ultrasound: New Concepts and Future Trends [J]. Advanced Ultrasound in Diagnosis and Therapy, 2021, 5(3): 268-276. |
[14] | Bing Mao, MD, Shaobo Duan, MD, Ruiqing Liu, MD, Na Li, PhD, Yaqiong Li, PhD, Lianzhong Zhang, MD. The Roles of Ultrasound-Based Radiomics In Precision Diagnosis and Treatment of Different Cancers: A Literature Review [J]. Advanced Ultrasound in Diagnosis and Therapy, 2020, 4(4): 291-296. |
[15] | Shuo Wang, BS, Ji-Bin Liu, MD, Ziyin Zhu, MD, John Eisenbrey, PhD. Artificial Intelligence in Ultrasound Imaging: Current Research and Applications [J]. Advanced Ultrasound in Diagnosis and Therapy, 2019, 3(3): 53-61. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Share: WeChat
Copyright ©2018 Advanced Ultrasound in Diagnosis and Therapy
|
Advanced Ultrasound in Diagnosis and Therapy (AUDT) a> is licensed under a Creative Commons Attribution 4.0 International License a>.