Advanced Ultrasound in Diagnosis and Therapy ›› 2023, Vol. 7 ›› Issue (2): 114-121.doi: 10.37015/AUDT.2023.230021
• Review Articles • Previous Articles Next Articles
Enze Qu, MDa, Xinling Zhang, MDa,*()
Received:
2023-04-02
Revised:
2023-04-22
Accepted:
2023-04-22
Online:
2023-06-30
Published:
2023-04-27
Contact:
Xinling Zhang, MD,
E-mail:zhxinl@mail.sysu.edu.cn
Enze Qu, MD, Xinling Zhang, MD. Advanced Application of Artificial Intelligence for Pelvic Floor Ultrasound in Diagnosis and Treatment. Advanced Ultrasound in Diagnosis and Therapy, 2023, 7(2): 114-121.
[1] | Doumouchtsis SK, de Tayrac R, Lee J, Daly O, Melendez-Munoz J, Lindo FM, et al. An International Continence Society (ICS)/ International Urogynecological Association (IUGA) joint report on the terminology for the assessment and management of obstetric pelvic floor disorders. Int Urogynecol J 2023; 34:1-42. |
[2] |
AIUM/IUGA practice parameter for the performance of Urogynecological ultrasound examinations: developed in collaboration with the ACR, the AUGS, the AUA, and the SRU. Int Urogynecol J 2019; 30:1389-1400.
doi: 10.1007/s00192-019-03954-5 |
[3] | Khatri G, Bhosale PR, Robbins JB, Akin EA, Ascher SM, et al. ACR Appropriateness Criteria® pelvic floor dysfunction in females. Journal of the American College of Radiology 2022; 19:S137-S155. |
[4] |
Dietz HP. Pelvic floor ultrasound: a review. Clin Obstet Gynecol 2017; 60:58-81.
doi: 10.1097/GRF.0000000000000264 pmid: 28005595 |
[5] | Handa VL, Roem J, Blomquist JL, Dietz HP, Muñoz A. Pelvic organ prolapse as a function of levator ani avulsion, hiatus size, and strength. Am J Obstet Gynecol 2019; 221:41.e1-41.e7. |
[6] |
Ying T, Li Q, Xu L, Liu F, Hu B. Three-dimensional ultrasound appearance of pelvic floor in nulliparous women and pelvic organ prolapse women. Int J Med Sci 2012; 9:894-900.
doi: 10.7150/ijms.4829 pmid: 23155363 |
[7] |
Majida M, Braekken I, Bø K, Benth J, Engh M. Anterior but not posterior compartment prolapse is associated with levator hiatus area: a three- and four-dimensional transperineal ultrasound study. BJOG 2010; 118:329-337.
doi: 10.1111/bjo.2011.118.issue-3 |
[8] |
Sindhwani N, Barbosa D, Alessandrini M, Heyde B, Dietz HP, D'Hooge J, et al. Semi-automatic outlining of levator hiatus. Ultrasound Obstet Gynecol 2016; 48:98-105.
doi: 10.1002/uog.15777 pmid: 26434661 |
[9] | Tingting Y, Huifang W, Hua C, Dong N, Qiuxiang C, Xiaoshuang D, et al. Study on the practicality of the semi‐automatic measurement for the urogenital hiatus. Chin J Ultrasonogr 2019; 28:256-260. |
[10] | Bonmati E, Hu Y, Sindhwani N, Dietz HP, D’hooge J, Barratt D, et al. Automatic segmentation method of pelvic floor levator hiatus in ultrasound using a self-normalizing neural network. J Med Imag 2018; 5:021206. |
[11] |
Li X, Hong Y, Kong D, Zhang X. Automatic segmentation of levator hiatus from ultrasound images using U-net with dense connections. Phys Med Biol 2019; 64:075015.
doi: 10.1088/1361-6560/ab0ef4 |
[12] |
Van den Noort F, Manzini C, van der Vaart CH, Slump CH, Grob ATM. Automatic identification and segmentation of slice of minimal hiatal dimensions in transperineal ultrasound volumes. Ultrasound Obstet Gynecol 2022; 60:570-576.
doi: 10.1002/uog.v60.4 |
[13] |
Huang Z, Qu E, Meng Y, Zhang M, Wei Q, Bai X, et al. Deep learning-based pelvic levator hiatus segmentation from ultrasound images. Eur J Radiol Open 2022; 9:100412.
doi: 10.1016/j.ejro.2022.100412 |
[14] |
Williams H, Cattani L, Van Schoubroeck D, Yaqub M, Sudre C, Vercauteren T, et al. Automatic extraction of hiatal dimensions in 3-D transperineal pelvic ultrasound recordings. Ultrasound Med Biol 2021; 47:3470-3479.
doi: 10.1016/j.ultrasmedbio.2021.08.009 pmid: 34538535 |
[15] |
Xia W, Ameri G, Fakim D, Akhuanzada H, Raza MZ, Shobeiri SA, et al. Automatic plane of minimal hiatal dimensions extraction from 3D female pelvic floor ultrasound. IEEE Trans Med Imaging 2022; 41:3873-3883.
doi: 10.1109/TMI.2022.3199968 |
[16] | Cyr MP, Kruger J, Wong V, Dumoulin C, Girard I, Morin M. Pelvic floor morphometry and function in women with and without puborectalis avulsion in the early postpartum period. Am J Obstet Gynecol 2017; 216:274.e1-e8. |
[17] |
Guzmán Rojas R, Wong V, Shek KL, Dietz HP. Impact of levator trauma on pelvic floor muscle function. Int Urogynecol J 2013; 25:375-380.
doi: 10.1007/s00192-013-2226-4 |
[18] |
Van Delft K, Sultan A, Thakar R, Schwertner-Tiepelmann N, Kluivers K. The relationship between postpartum levator ani muscle avulsion and signs and symptoms of pelvic floor dysfunction. BJOG 2014; 121:1164-1172.
doi: 10.1111/bjo.2014.121.issue-9 |
[19] |
Van den Noort F, Grob ATM, Slump CH, van der Vaart CH, van Stralen M. Automatic segmentation of puborectalis muscle on three‐dimensional transperineal ultrasound. Ultrasound Obstet Gynecol 2018; 52:97-102.
doi: 10.1002/uog.18927 pmid: 29024119 |
[20] |
Noort F, Vaart CH, Grob ATM, Waarsenburg MK, Slump CH, Stralen M. Deep learning enables automatic quantitative assessment of puborectalis muscle and urogenital hiatus in plane of minimal hiatal dimensions. Ultrasound Obstet Gynecol 2019; 54:270-275.
doi: 10.1002/uog.20181 pmid: 30461079 |
[21] |
Wu S, Ren Y, Lin X, Huang Z, Zheng Z, Zhang X. Development and validation of a composite AI model for the diagnosis of levator ani muscle avulsion. Eur Radiol 2022; 32:5898-5906.
doi: 10.1007/s00330-022-08754-y pmid: 35362748 |
[22] |
Shek KL, Zazzera VD, Atan IK, Rojas RG, Langer S, Dietz HP. The evolution of transperineal ultrasound findings of the external anal sphincter during the first years after childbirth. Int Urogynecol J 2016; 27:1899-1903.
pmid: 27250832 |
[23] |
Jangö H, Langhoff-Roos J, Rosthøj S, Sakse A. Recurrent obstetric anal sphincter injury and the risk of long-term anal incontinence. Am J Obstet Gynecol 2017; 216: 610.e1-e8.
doi: 10.1016/j.ajog.2017.02.010 |
[24] |
Sultan AH, Thakar R. Lower genital tract and anal sphincter trauma. Best Pract Res Clin Obstet Gynaecol 2002; 16:99-115.
doi: 10.1053/beog.2002.0258 |
[25] |
Zhang M, Lin X, Zheng Z, Chen Y, Ren Y, Zhang X. Artificial intelligence models derived from 2D transperineal ultrasound images in the clinical diagnosis of stress urinary incontinence. Int Urogynecol J 2021; 33:1179-1185.
doi: 10.1007/s00192-021-04859-y |
[26] |
Youssef A, Salsi G, Montaguti E, Bellussi F, Pacella G, Azzarone C, et al. Automated measurement of the angle of progression in labor: a feasibility and reliability study. Fetal Diagn Ther 2017; 41:293-299.
doi: 10.1159/000448947 pmid: 27592216 |
[27] |
Conversano F, Peccarisi M, Pisani P, Di Paola M, De Marco T, Franchini R, et al. Automatic ultrasound technique to measure angle of progression during labor. Ultrasound Obstet Gynecol 2017; 50:766-775.
doi: 10.1002/uog.17441 pmid: 28233418 |
[28] |
Angeli L, Conversano F, Dall’Asta A, Volpe N, Simone M, Di Pasquo E, et al. New technique for automatic sonographic measurement of change in head-perineum distance and angle of progression during active phase of second stage of labor. Ultrasound Obstet Gynecol 2020; 56:597-602.
doi: 10.1002/uog.21963 pmid: 31909525 |
[29] |
Shen YT, Chen L, Yue WW, Xu HX. Artificial intelligence in ultrasound. Eur J Radiol 2021; 139:109717.
doi: 10.1016/j.ejrad.2021.109717 |
[30] | Yin P, Wang H. Evaluation of nursing effect of pelvic floor rehabilitation training on pelvic organ prolapse in postpartum pregnant women under ultrasound imaging with artificial intelligence algorithm. Comput Math Methods Med 2022; 2022:1786994. |
[31] | Zhu Y, Zhang J, Ji Z, Liu W, Li M, Xia E, et al. Ultrasound evaluation of pelvic floor function after transumbilical laparoscopic single-site total hysterectomy using deep learning algorithm. Comput Math Methods Med 2022; 2022:1116332. |
[32] | Yu H, Zhao Z, Duan X, Zhou J, Su D. Ultrasound image under artificial intelligence algorithm to evaluate the intervention effect of accelerated rehabilitation surgery nursing on laparoscopic hysterectomy. Comput Intell Neurosci 2022; 2022:9042954. |
[33] | Chen L, Lu C. Image enhancement algorithm-based ultrasound on pelvic floor rehabilitation training in preventing postpartum female pelvic floor dysfunction. Comput Math Methods Med 2022; 2022:8002055. |
[34] |
Lubner RJ, Barber SR, Knoll RM, Kempfle J, Lee DJ, Reinshagen KL, et al. Transcanal computed tomography views for transcanal endoscopic lateral skull base surgery: pilot cadaveric study. J Neurol Surg B Skull Base 2021; 82:338-344.
doi: 10.1055/s-0039-3400219 |
[35] |
Jing B, Qian R, Jiang D, Gai Y, Liu Z, Guo F, et al. Extracellular vesicles based pre-targeting strategy enables multi-modal imaging of orthotopic colon cancer and image-guided surgery. J Nanobiotechnology 2021; 19:151.
doi: 10.1186/s12951-021-00888-3 |
[1] | Tianxiang Li, BS, Fei Ji, BS, Ruina Zhao, MD, Huazhen Liu, MD, Meng Yang, MD. Advances in the Research of Ultrasound and Artificial Intelligence in Neuromuscular Disease [J]. Advanced Ultrasound in Diagnosis and Therapy, 2023, 7(2): 122-129. |
[2] | Rui Chen, MM, Fangqi Guo, MM, Jia Guo, MD, Jiaqi Zhao, MD. Application and Prospect of AI and ABVS-based in Breast Ultrasound Diagnosis [J]. Advanced Ultrasound in Diagnosis and Therapy, 2023, 7(2): 130-135. |
[3] | Cancan Cui, MD, Zhaojun Li, PhD, Yanping Lin, PhD. Advances in Intelligent Segmentation and 3D/4D Reconstruction of Carotid Ultrasound Imaging [J]. Advanced Ultrasound in Diagnosis and Therapy, 2023, 7(2): 140-151. |
[4] | Wenjun Zhang, MD, Mi Zhou, PhD, Qingguo Meng, MD, Lin Zhang, MS, Xin Liu, MS, Paul Liu, PhD, Dong Liu, PhD. Rapid Screening of Carotid Plaque in Cloud Handheld Ultrasound System Based on 5G and AI Technology [J]. Advanced Ultrasound in Diagnosis and Therapy, 2023, 7(2): 152-157. |
[5] | Tairui Zhang, BS, Linxue Qian, MD. ChatGPT Related Technology and Its Applications in the Medical Field [J]. Advanced Ultrasound in Diagnosis and Therapy, 2023, 7(2): 158-171. |
[6] | Mofan Li, Yongyue Zhang, MM, Yang Sun, MM, Ligang Cui, PhD, Shumin Wang, PhD. AI-based ChatGPT Impact on Medical Writing and Publication [J]. Advanced Ultrasound in Diagnosis and Therapy, 2023, 7(2): 188-192. |
[7] | Won-Chul Bang, PhD, Vice President, Yeong Kyeong Seong, PhD, Jinyong Lee. The Impact of Deep Learning on Ultrasound in Diagnosis and Therapy: Enhancing Clinical Decision Support, Workflow Efficiency, Quantification, Image Registration, and Real-time Assistance [J]. Advanced Ultrasound in Diagnosis and Therapy, 2023, 7(2): 204-216. |
[8] | Siyi Xun, MA, Wei Ke, PhD, Mingfu Jiang, MA, Huachao Chen, BA, Haoming Chen, BA, Chantong Lam, PhD, Ligang Cui, MD, Tao Tan, PhD. Current Status, Prospect and Bottleneck of Ultrasound AI Development: A Systemic Review [J]. Advanced Ultrasound in Diagnosis and Therapy, 2023, 7(2): 61-72. |
[9] | Wenjia Guo, MM, Shengli Li, MM, Xing Yu, MD, Huaxuan Wen, BM, Ying Yuan, MM, Xia Yang, MM. Artificial Intelligence in Prenatal Ultrasound: Clinical Application and Prospect [J]. Advanced Ultrasound in Diagnosis and Therapy, 2023, 7(2): 82-90. |
[10] | Yaoting Wang, MD, Huihui Chai, MD, Ruizhong Ye, MD, Jingzhi Li, MD, PhD, Ji-Bin Liu, MD, Chen Lin, Chengzhong Peng, MD. Point-of-Care Ultrasound: New Concepts and Future Trends [J]. Advanced Ultrasound in Diagnosis and Therapy, 2021, 5(3): 268-276. |
[11] | Shuo Wang, BS, Ji-Bin Liu, MD, Ziyin Zhu, MD, John Eisenbrey, PhD. Artificial Intelligence in Ultrasound Imaging: Current Research and Applications [J]. Advanced Ultrasound in Diagnosis and Therapy, 2019, 3(3): 53-61. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Share: WeChat
Copyright ©2018 Advanced Ultrasound in Diagnosis and Therapy
|
Advanced Ultrasound in Diagnosis and Therapy (AUDT) a>
is licensed under a Creative Commons Attribution 4.0 International License a>.