Advanced Ultrasound in Diagnosis and Therapy ›› 2023, Vol. 7 ›› Issue (4): 373-380.doi: 10.37015/AUDT.2023.230023
• Original Research • Previous Articles Next Articles
Yalin Wu, PhDa,1, Qiaoli Ge, MMa,1, Linyang Yan, PhDa,1, Desheng Sun, MDa,*()
Received:
2023-04-02
Revised:
2023-05-14
Accepted:
2023-06-04
Online:
2023-12-30
Published:
2023-10-23
Contact:
Department of Ultrasonography, Peking University Shenzhen Hospital, 1120 Lianhua Road, Shenzhen, Guangdong, China. e-mail: About author:
Yalin Wu, Qiaoli Ge and Linyang Yan contributed equally to this study.
Yalin Wu, PhD, Qiaoli Ge, MM, Linyang Yan, PhD, Desheng Sun, MD. A Non-Invasive Follicular Thyroid Cancer Risk Prediction System Based on Deep Hybrid Multi-feature Fusion Network. Advanced Ultrasound in Diagnosis and Therapy, 2023, 7(4): 373-380.
Table 1
Performance comparison results"
Method | Accuracy(%) | Sensitivity(%) | Specificity(%) | AUC(%) |
---|---|---|---|---|
LeNet | 72.60 | 70.19 | 74.78 | 80.99 |
AlexNet | 76.71 | 75.96 | 77.39 | 86.36 |
ZFNet | 53.88 | 2.88 | 100.00 | 70.61 |
VGGNet | 72.60 | 60.58 | 83.48 | 80.14 |
Inception v1 | 90.41 | 86.54 | 93.91 | 94.38 |
ResNet | 84.93 | 83.65 | 86.09 | 91.30 |
SENet | 56.62 | 98.08 | 19.13 | 72.03 |
Cropping | 84.93 | 88.46 | 81.74 | 92.07 |
Proposed method | 89.95 | 88.46 | 91.30 | 96.69 |
[1] |
Grani G, Lamartina L, Durante C, Filetti S, Cooper DS. Follicular thyroid cancer and Hürthle cell carcinoma: Challenges in diagnosis, treatment, and clinical management. Lancet Diabetes Endocrinol 2018; 6:500-514.
doi: 10.1016/S2213-8587(17)30325-X |
[2] |
Tallini G, Tuttle RM, Ghossein RA. The history of the follicular variant of papillary thyroid carcinoma. J Clin Endocrinol Metab 2017; 102:15-22.
doi: 10.1210/jc.2016-2976 pmid: 27732333 |
[3] |
Pstrag N, Ziemnicka K, Bluyssen H, Wesoly J. Thyroid cancers of follicular origin in a genomic light: In-depth overview of common and unique molecular marker candidates. Mol Cancer 2018; 17:116.
doi: 10.1186/s12943-018-0866-1 pmid: 30089490 |
[4] | Baldini E, Sorrenti S, Tartaglia F, Catania A, Palmieri A, Pironi D, et al. New perspectives in the diagnosis of thyroid follicular lesions. Int J Surg 2017; 41 Suppl 1:S7-S12. |
[5] |
Xu B, Tallini G, Scognamiglio T, Roman BR, Tuttle RM, Ghossein RA. Outcome of large noninvasive follicular thyroid neoplasm with papillary-like nuclear features. Thyroid 2017; 27:512-517.
doi: 10.1089/thy.2016.0649 pmid: 28136139 |
[6] | de Jong MC, McNamara J, McGlashan N, Winter L, and Mihai R. Risk of malignancy in thyroid nodules selected for fine needle aspiration biopsy based on ultrasound risk stratification. British Journal of Surgery 2022 ;109(Supplement_2),znac056. |
[7] |
Tian T, Chen Y, Xiang Y, Liu L, Liu B. Remarkable response of pulmonary metastases rather than remnant thyroid in 131I therapy of follicular thyroid cancer. Clin Nucl Med 2019; 44:327-329.
doi: 10.1097/RLU.0000000000002477 pmid: 30688748 |
[8] |
García-Burillo A, Monturiol-Duran JA, Iglesias-Felip C, Villasboas-Rosciolesi D, Castell-Conesa J. Follicular thyroid carcinoma metastases on round ligament of liver. Clin Nucl Med 2021; 46:326-328.
doi: 10.1097/RLU.0000000000003526 pmid: 33512955 |
[9] |
Ohori NP, Nishino M. Follicular neoplasm of thyroid revisited: current differential diagnosis and the impact of molecular testing. Adv Anat Pathol 2023; 30:11-23.
doi: 10.1097/PAP.0000000000000368 |
[10] |
Xu B, Ghossein RA. Advances in thyroid pathology: high grade follicular cell-derived thyroid carcinoma and anaplastic thyroid carcinoma. Adv Anat Pathol 2023; 30:3-10.
doi: 10.1097/PAP.0000000000000380 |
[11] |
Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG, Granton P, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 2012; 48:441-446.
doi: 10.1016/j.ejca.2011.11.036 pmid: 22257792 |
[12] |
Erickson BJ, Korfiatis P, Akkus Z, Kline TL. Machine learning for medical imaging. Radiographics 2017; 37:505-515.
doi: 10.1148/rg.2017160130 pmid: 28212054 |
[13] |
Yu J, Deng Y, Liu T, Zhou J, Jia X, Xiao T, et al. Lymph node metastasis prediction of papillary thyroid carcinoma based on transfer learning radiomics. Nat Commun 2020; 11:4807.
doi: 10.1038/s41467-020-18497-3 pmid: 32968067 |
[14] |
Shin I, Kim YJ, Han K, Lee E, Kim HJ, Shin JH, et al. Application of machine learning to ultrasound images to differentiate follicular neoplasms of the thyroid gland. Ultrasonography 2020; 39:257-265.
doi: 10.14366/usg.19069 pmid: 32299197 |
[15] |
Lim KJ, Choi CS, Yoon DY, Chang SK, Kim KK, Han H, et al. Computer-aided diagnosis for the differentiation of malignant from benign thyroid nodules on ultrasonography. Acad Radiol 2008; 15:853-858.
doi: 10.1016/j.acra.2007.12.022 pmid: 18572120 |
[16] |
Wu H, Deng Z, Zhang B, Liu Q, Chen J. Classifier model based on machine learning algorithms: application to differential diagnosis of suspicious thyroid nodules via sonography. AJR Am J Roentgenol 2016; 207:859-864.
doi: 10.2214/AJR.15.15813 |
[17] |
Matiz S, Barner KE. Inductive conformal predictor for convolutional neural networks: Applications to active learning for image classification. Pattern Recognition 2019; 90:172-182.
doi: 10.1016/j.patcog.2019.01.035 |
[18] |
Wang Y, Chen Y, Yang N, Zheng L, Dey N, Ashour AS, et al. Classification of mice hepatic granuloma microscopic images based on a deep convolutional neural network. Applied Soft Computing 2019; 74:40-50.
doi: 10.1016/j.asoc.2018.10.006 |
[19] |
Meng N, Lam EY, Tsia KK, So HK. Large-scale multi-class image-based cell classification with deep learning. IEEE J Biomed Health Inform 2019; 23:2091-2098.
doi: 10.1109/JBHI.6221020 |
[20] |
Wang C, Chen D, Hao L, Liu X, Zeng Y, Chen J, et al. Pulmonary image classification based on inception-v3 transfer learning model. IEEE Access 2019; 7:146533-146541.
doi: 10.1109/Access.6287639 |
[21] |
Yu L, Chen H, Dou Q, Qin J, Heng PA. Automated melanoma recognition in dermoscopy images via very deep residual networks. IEEE Trans Med Imaging 2017; 36:994-1004.
doi: 10.1109/TMI.2016.2642839 |
[22] |
Yan L, Shi Y, Wei M, Wu Y. Multi-feature fusing local directional ternary pattern for facial expressions signal recognition based on video communication system. Alexandria Engineering Journal 2023; 63:307-320.
doi: 10.1016/j.aej.2022.08.003 |
[23] |
Wu Y, Zhang Q, Hu Y, Sun-Woo K, Zhang X, Zhu H, et al. Novel binary logistic regression model based on feature transformation of XGBoost for type 2 diabetes mellitus prediction in healthcare systems. Future Generation Computer Systems 2022; 129:1-2.
doi: 10.1016/j.future.2021.11.003 |
[1] | Shujun Xia, MD, Jianqiao Zhou, MD. Ultrasound Image Generation and Modality Conversion Based on Deep Learning [J]. Advanced Ultrasound in Diagnosis and Therapy, 2023, 7(2): 136-139. |
[2] | Won-Chul Bang, PhD, Vice President, Yeong Kyeong Seong, PhD, Jinyong Lee. The Impact of Deep Learning on Ultrasound in Diagnosis and Therapy: Enhancing Clinical Decision Support, Workflow Efficiency, Quantification, Image Registration, and Real-time Assistance [J]. Advanced Ultrasound in Diagnosis and Therapy, 2023, 7(2): 204-216. |
[3] | Jingfang Dong, MD, Jianyun Wang, MD, Xiangzhu Wang, MD. Predicting Malignancy in Sonographic Features of Thyroid Nodules Using Convolutional Neural Networks ResNet50 Model [J]. Advanced Ultrasound in Diagnosis and Therapy, 2023, 7(1): 16-22. |
[4] | Xuehong Diao, MD, Lin Chen, MD, Bo Yu, MS, Jiamei Jin, MS, Jia Zhan, MD, Yue Chen, BS. Follicular Thyroid Neoplasmon Conventional and Contrast-enhanced Ultrasound [J]. Advanced Ultrasound in Diagnosis and Therapy, 2022, 6(2): 48-57. |
[5] | Shijing Song, MD, Qingqing Wu, MD, Jingjing Wang, MD, Jinghua Li, MD, Dan Yan, MD. Clinical Applications of Crystal Vue Technology: A Review [J]. Advanced Ultrasound in Diagnosis and Therapy, 2022, 6(1): 1-6. |
[6] | Jinlian Ma, PhD, Dexing Kong, PhD. Deep Learning Models for Segmentation of Lesion Based on Ultrasound Images [J]. Advanced Ultrasound in Diagnosis and Therapy, 2018, 2(2): 82-93. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Share: WeChat
Copyright ©2018 Advanced Ultrasound in Diagnosis and Therapy
|
Advanced Ultrasound in Diagnosis and Therapy (AUDT) a>
is licensed under a Creative Commons Attribution 4.0 International License a>.