[1] |
Baltrusaitis T, Ahuja C, Morency L P. Multimodal machine learning: a survey and taxonomy. IEEE Trans Pattern Anal Mach Intell 2019; 41:423-443.
doi: 10.1109/TPAMI.2018.2798607
|
[2] |
Kieselmann J P, Fuller C D, Gurney-Champion O J, Oelfke U. Cross-modality deep learning: contouring of MRI data from annotated CT data only. Med Phys 2021; 48:1673-1684.
doi: 10.1002/mp.v48.4
|
[3] |
Mao L, Wu B, Wu X, Pei X, Xu X. Newest progresses of generation of synthetic CT based on deep learning in MRI-only radiotherapy. Chinese Journal of Medical Imaging Technology 2022; 38:619-623.
|
[4] |
Lei Y, Harms J, Wang T, Liu Y, Shu H K, Jani A B, et al. MRI-only based synthetic CT generation using dense cycle consistent generative adversarial networks. Med Phys 2019; 46:3565-3581.
doi: 10.1002/mp.13617
pmid: 31112304
|
[5] |
Boulanger M, Nunes J C, Chourak H, Largent A, Tahri S, Acosta O, et al. Deep learning methods to generate synthetic CT from MRI in radiotherapy: a literature review. Phys Med 2021; 89:265-281.
doi: 10.1016/j.ejmp.2021.07.027
pmid: 34474325
|
[6] |
Meng X, Wu X, Peng Z, Xu X, Pei X. Auto-segmentation of organs-at-risk in abdominal CT after combining with synthetic-MRI information. Chinese Journal of Medical Physics 2022; 39:203-208.
|
[7] |
Jin C B, Kim H, Liu M, Jung W, Joo S, Park E, et al. Deep CT to MR synthesis using paired and unpaired data. Sensors (Basel) 2019; 19:2361.
doi: 10.3390/s19102361
|
[8] |
Feng E, Qin P, Chai R, Zeng J, Wang Q, Meng Y, et al. MRI generated from CT for acute ischemic stroke combining radiomics and generative adversarial networks. IEEE J Biomed Health Inform 2022; 26:6047-6057.
doi: 10.1109/JBHI.2022.3205961
|
[9] |
Li W, Li Y, Qin W, Liang X, Xu J, Xiong J, et al. Magnetic resonance image (MRI) synthesis from brain computed tomography (CT) images based on deep learning methods for magnetic resonance (MR)-guided radiotherapy. Quant Imaging Med Surg 2020; 10:1223-1236.
doi: 10.21037/qims
|
[10] |
Pan K, Cheng P, Huang Z, Lin L, Tang X. Transformer-based T2-weighted MRI synthesis from T1-weighted images. Annu Int Conf IEEE Eng Med Biol Soc 2022;2022:5062-5065.
|
[11] |
Kawahara D, Nagata Y. T1-weighted and T2-weighted MRI image synthesis with convolutional generative adversarial networks. Rep Pract Oncol Radiother 2021; 26:35-42.
doi: 10.5603/RPOR.a2021.0005
|
[12] |
Yang Q, Li N, Zhao Z, Fan X, Chang E I, Xu Y. MRI cross-modality image-to-image translation. Sci Rep 2020; 10:3753.
doi: 10.1038/s41598-020-60520-6
pmid: 32111966
|
[13] |
Dai X, Lei Y, Fu Y, Curran W J, Liu T, Mao H, et al. Multimodal MRI synthesis using unified generative adversarial networks. Med Phys 2020; 47:6343-6354.
doi: 10.1002/mp.14539
pmid: 33053202
|
[14] |
Cong W, Yang J, Liu Y, Wang Y. Fast and automatic ultrasound simulation from CT images. Comput Math Methods Med 2013; 2013: 327613.
|
[15] |
Gjerald S U, Brekken R, Hergum T, D'Hooge J. Real-time ultrasound simulation using the GPU. IEEE Trans Ultrason Ferroelectr Freq Control 2012; 59:885-892.
doi: 10.1109/TUFFC.2012.2273
pmid: 22622973
|
[16] |
Satheesh B A, Thittai A K. A fast method for simulating ultrasound image from patient-specific CT data. Biomedical Signal Processing and Control 2019; 48:61-68.
doi: 10.1016/j.bspc.2018.10.003
|
[17] |
Cronin N J, Finni T, Seynnes O. Using deep learning to generate synthetic B-mode musculoskeletal ultrasound images. Comput Methods Programs Biomed 2020; 196:105583.
doi: 10.1016/j.cmpb.2020.105583
|
[18] |
Tom F, Sheet D. Simulating patho-realistic ultrasound images using deep generative networks with adversarial learning. in 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018) 2018.
|
[19] |
Wang R, Fang Z, Gu J, Guo Y, Zhou S, Wang Y, et al. High-resolution image reconstruction for portable ultrasound imaging devices. EURASIP Journal on Advances in Signal Processing 2019; 2019:56.
doi: 10.1186/s13634-019-0649-x
|
[20] |
Wu S, Gao Z, Liu Z, Luo J, Zhang H, Li S. Direct reconstruction of ultrasound elastography using an end-to-end deep neural network. in Medical Image Computing and Computer Assisted Intervention-MICCAI 2018 ; Cham: Springer International Publishing.
|
[21] |
Kibria G, Rivaz H. GLUENet: ultrasound elastography using convolutional neural network: International Workshops, POCUS 2018, BIVPCS 2018, CuRIOUS 2018, and CPM 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16-20, 2018, Proceedings. 2018. p. 21-28.
|
[22] |
Zhang Q, Zhao J, Long X, Luo Q, Wang R, Ding X, et al. AUE-Net: automated generation of ultrasound elastography using generative adversarial network. Diagnostics (Basel) 2022; 12:253.
|
[23] |
Wildeboer R R, van Sloun R J G, Mannaerts C K, Moraes P H, Salomon G, Chammas M C, et al. Synthetic elastography using B-mode ultrasound through a deep fully convolutional neural network. IEEE Trans Ultrason Ferroelectr Freq Control 2020; 67: 2640-2648.
doi: 10.1109/TUFFC.58
|
[24] |
Yao Z, Luo T, Dong Y, Jia X, Deng Y, Wu G, et al. Virtual elastography ultrasound via generative adversarial network for breast cancer diagnosis. Nat Commun 2023; 14:788.
doi: 10.1038/s41467-023-36102-1
|