Review Articles

The Application and Research Progress of Cardiac Magnetic Resonance in the Assessment of Right Ventricular-Pulmonary Arterial Coupling

  • Ya Chen, MS ,
  • Xinqi Wang, MS ,
  • Anni Chen, MS ,
  • Zhenyi Li, MS ,
  • Lan Yang, MS ,
  • Zhaojun Li, MD ,
  • Lin Jin, MD ,
  • Xifu Wang, MD
Expand
  • aShandong Second Medical University, Weifang, China
    bDepartment of Radiology, Jiading Branch of Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
    cDepartment of Radiology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
    dFujian University of Traditional Chinese Medicine, Fujian, China
    eDepartment of Ultrasound, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
    fChengdu Medical College, Sichuan, China
    gDepartment of Ultrasound, Jiading Branch of Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China

1 Ya Chen, Xinqi Wang, and Anni Chen contributed equally to this study.

Department of Ultrasound, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200052, China (LJ); Department of Radiology, Jiading Branch of Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201803, China (XFW).e-mail: jinlin205@163.com (LJ);
wangxiechen001@163.com (XFW)

Received date: 2024-10-12

  Accepted date: 2024-12-28

  Online published: 2024-11-12

Abstract

Right ventricular-pulmonary arterial coupling refers to the interaction and functional matching between the right ventricle and the pulmonary artery. When the coupling is disrupted, it can lead to a series of cardiovascular diseases, such as pulmonary hypertension, congenital heart disease, heart failure and so on. Therefore, it is important to evaluate cardiovascular structure and function. Cardiac magnetic resonance has the advantage of multi-parameter, multi-sequence, and high-resolution imaging, which can be used to comprehensively evaluate the cardiovascular system through cardiac magnetic resonance feature tracking technology, cardiac magnetic resonance cine imaging technology, T1 mapping, and T2 mapping imaging, and so on. This review summarizes the application and research progress of cardiac magnetic resonance technology in the assessment of the right ventricle and the pulmonary artery (RV-PA) coupling.

Cite this article

Ya Chen, MS , Xinqi Wang, MS , Anni Chen, MS , Zhenyi Li, MS , Lan Yang, MS , Zhaojun Li, MD , Lin Jin, MD , Xifu Wang, MD . The Application and Research Progress of Cardiac Magnetic Resonance in the Assessment of Right Ventricular-Pulmonary Arterial Coupling[J]. ADVANCED ULTRASOUND IN DIAGNOSIS AND THERAPY, 2024 , 8(4) : 183 -194 . DOI: 10.37015/AUDT.2024.240062

References

[1] Guo R, Weing?rtner S, ?iuryt? P, T. Stoeck C, Füetterer M, E. Campbell-Washburn A, et al. Emerging techniques in cardiac magnetic resonance imaging. J Magn Reson Imaging 2022; 55:1043-1059.
[2] Pons-Lladó G. Assessment of cardiac function by CMR. Eur Radiol Suppl 2005; 15:B23-B32.
[3] Salerno M, Sharif B, Arheden H, Kumar A, Axel L, Li D, et al. Recent advances in cardiovascular magnetic resonance: techniques and applications. Circ Cardiovasc Imaging 2017; 10:e003951.
[4] Wang J, Li X, Jiang J, Luo Z, Tan X, Ren R, Fujita T, et al. Right ventricular pulmonary arterial coupling and outcome in heart failure with preserved ejection fraction. Clin Cardiol 2024; 47:e24308.
[5] Sanz J, García-Alvarez A, Fernández-Friera L, Nair A, Mirelis JG, Sawit ST, et al. Right ventriculo-arterial coupling in pulmonary hypertension: a magnetic resonance study. Heart 2012; 98:238-243.
[6] Brener MI, Grayburn P, Lindenfeld J, Burkhoff D, Liu M, Zhou Z, et al. Right ventricular-pulmonary arterial coupling in patients with hf secondary mr: analysis from the COAPT trial. JACC Cardiovasc Interv 2021; 14:2231-2242.
[7] Nochioka K, Querejeta Roca G, Claggett B, Biering-S?rensen T, Matsushita K, Hung C-L, et al. Right ventricular function, right ventricular-pulmonary artery coupling, and heart failure risk in 4 US communities: the atherosclerosis risk in communities (ARIC) study. JAMA Cardiol 2018;3: 939-948.
[8] Emrich T, Hahn F, Fleischmann D, Halfmann MC, Düber C, Varga‐Szemes A, et al. T1 and T2 mapping to detect chronic inflammation in cardiac magnetic resonance imaging in heart failure with reduced ejection fraction. ESC Heart Fail 2020; 7:2544-2552.
[9] Xia H, Yeung DF, Di Stefano C, Cha SS, Pellikka PA, Ye Z, et al. Ventricular strain analysis in patients with no structural heart disease using a vendor-independent speckle-tracking software. BMC Cardiovasc Disord 2020; 20:274.
[10] Bourfiss M, Vigneault DM, Aliyari Ghasebeh M, Murray B, James CA, Tichnell C, et al. Feature tracking CMR reveals abnormal strain in preclinical arrhythmogenic right ventricular dysplasia/ cardiomyopathy: a multisoftware feasibility and clinical implementation study. J of Cardiovasc Magn Reson 2016; 19:66.
[11] Han Y, Chen Y, Ferrari VA. Contemporary application of cardiovascular magnetic resonance imaging. Annu Rev Med 2020; 71:221-234.
[12] Hameed A, Condliffe R, Swift AJ, Alabed S, Kiely DG, Charalampopoulos A. Assessment of right ventricular function-a state of the art. Curr Heart Fail Rep 2023; 20:194-207.
[13] Trejo-Velasco B, Fabregat-Andrés ó, García-González PM, Perdomo-Londo?o DC, Cubillos-Arango AM, Ferrando-Beltrán MI, et al. Prognostic value of mean velocity at the pulmonary artery estimated by cardiovascular magnetic resonance as a prognostic predictor in a cohort of patients with new-onset heart failure with reduced ejection fraction. J of Cardiovasc Magn Reson 2020; 22:28.
[14] Scatteia A, Baritussio A, Bucciarelli-Ducci C. Strain imaging using cardiac magnetic resonance. Heart Fail Rev 2017; 22:465-476.
[15] Aherne E, Chow K, Carr J. Cardiac T. 1 mapping: techniques and applications. Magn Reson Imaging 2020; 51:1336-1356.
[16] Aquaro GD, Monastero S, Todiere G, Barison A, De Gori C, Grigoratos C, et al. Diagnostic role of native T1 mapping compared to conventional magnetic resonance techniques in cardiac disease in a real-life cohort. Diagnostics(Basel) 2023; 13:2461.
[17] Grapsa J, O’Regan DP, Pavlopoulos H, Durighel G, Dawson D, Nihoyannopoulos P. Right ventricular remodelling in pulmonary arterial hypertension with three-dimensional echocardiography: comparison with cardiac magnetic resonance imaging. European J of Echocardiogr 2010; 11:64-73.
[18] Vizzardi E, Bonadei I, Sciatti E, Pezzali N, Farina D, D’Aloia A, et al. Quantitative analysis of right ventricular (RV) function with echocardiography in chronic heart failure with no or mild rv dysfunction: comparison with cardiac magnetic resonance imaging. J of Ultrasound Med 2015; 34:247-255.
[19] Wang SY, OuYang RZ, Hu LW, Xie WH, Peng YF, Wang L, et al. Right and left ventricular interactions, strain, and remodeling in repaired pulmonary stenosis patients with preserved right ventricular ejection fraction: A cardiac magnetic resonance study. Magn Reson Imaging 2020; 52:129-138.
[20] Freed BH, Tsang W, Bhave NM, Patel AR, Weinert L, Yamat M, et al. Right ventricular strain in pulmonary arterial hypertension: a 2d echocardiography and cardiac magnetic resonance study. Echocardiography 2015; 32:257-263.
[21] Vonk Noordegraaf A, Westerhof BE, Westerhof N. The relationship between the right ventricle and its load in pulmonary hypertension. J Am Coll of Cardio 2017; 69:236-243.
[22] Garg P, Gosling R, Swoboda P, Jones R, Rothman A, Wild JM, et al. Cardiac magnetic resonance identifies raised left ventricular filling pressure: prognostic implications. Eur Heart J 2022; 43:2511-2522.
[23] Po JR, Tong M, Meeran T, Potluri A, Raina A, Doyle M, et al. Quantification of cardiac output with phase contrast magnetic resonance imaging in patients with pulmonary hypertension. J Clin Imaging Sci 2020; 10:26.
[24] Wang HH, Tseng WI, Yu HY, Chang MC, Peng HH. Phase-contrast magnetic resonance imaging for analyzing hemodynamic parameters and wall shear stress of pulmonary arteries in patients with pulmonary arterial hypertension. MAGMA 2019; 32:17-627.
[25] Tello K, Dalmer A, Axmann J, Vanderpool R, Ghofrani HA, Naeije R, et al. Reserve of right ventricular-arterial coupling in the setting of chronic overload. Circ Heart Fail 2019; 12:e005512.
[26] Fan Y, Guo X, Sun X, Cao X, He J, Zhu L, et al. Assessment of the hemodynamics of pulmonary artery and right ventricular function in chronic obstructive pulmonary disease with pulmonary hypertension using cardiac magnetic resonance imaging. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue 2019; 31:972-977.
[27] Jaijee S, Quinlan M, Tokarczuk P, Clemence M, Howard LSGE, Gibbs JSR, et al. Exercise cardiac MRI unmasks right ventricular dysfunction in acute hypoxia and chronic pulmonary arterial hypertension. Am J of Physiol Heart Circ Physio 2018; 315:H950-H957.
[28] Flachskampf FA, Biering-S?rensen T, Solomon SD, Duvernoy O, Bjerner T, Smiseth OA. Cardiac Imaging to evaluate left ventricular diastolic function. JACC: Cardiovasc Imaging 2015; 8:1071-1093.
[29] Trejo-Velasco B, Ridocci-Soriano F, García-González MP, Cubillos-Arango AM, Payá-Soriano R, Fabregat-Andrés ó. Mean velocity of the pulmonary artery estimated by cardiac magnetic resonance as an early prognostic predictor in heart failure. Med Clín 2019; 153:232-238.
[30] Truong U, Meinel K, Haddad F, Koestenberger M, Carlsen J, Ivy D, et al. Update on noninvasive imaging of right ventricle dysfunction in pulmonary hypertension. Cardiovasc Diagn Ther 2020; 10:1604-1624.
[31] Naeije R, Richter MJ, Rubin LJ. The physiological basis of pulmonary arterial hypertension. Eur Respir J 2022; 59:2102334.
[32] Chin KM, Kingman M, De Lemos JA, Warner JJ, Reimold S, Peshock R, et al. Changes in right ventricular structure and function assessed using cardiac magnetic resonance imaging in bosentan-treated patients with pulmonary arterial hypertension. The Am J Cardio 2008; 101:1669-1672.
[33] Lin K, Sarnari R, Gordon DZ, Markl M, Carr JC. Cine MRI-derived radiomics features indicate hemodynamic changes in the pulmonary artery. Int J Cardiovasc Imaging 2024; 40:287-294.
[34] Bartnik A, Pepke-Zaba J, Hoole SP, White P, Garbi M, Coghlan JG, et al. Right ventricular-pulmonary artery coupling in chronic thromboembolic pulmonary hypertension. Heart 2023; 109:898-904.
[35] Deng M, Liu A, Xu W, Yang H, Gao Q, Zhang L, et al. Right and left ventricular blood pool T2 ratio on cardiac magnetic resonance imaging correlates with hemodynamics in patients with pulmonary hypertension. Insights Imaging 2023; 14:66.
[36] Sachdeva S, Gupta SK. Imaging modalities in congenital heart disease. Indian J Pediatr 2020; 87:385-397.
[37] Clarke CJ, Gurka MJ, Norton PT, Kramer CM, Hoyer AW. Assessment of the accuracy and reproducibility of RV Volume measurements by CMR in Congenital Heart Disease. JACC: Cardiovasc Imaging 2012; 5:28-37.
[38] Chen SS, Keegan J, Dowsey AW, Ismail T, Wage R, Li W, et al. Cardiovascular magnetic resonance tagging of the right ventricular free wall for the assessment of long axis myocardial function in congenital heart disease. J Cardiovasc Magn Reson 2011; 13:80.
[39] Karimi-Bidhendi S, Arafati A, Cheng AL, Wu Y, Kheradvar A, Jafarkhani H. Fully automated deep learning segmentation of pediatric cardiovascular magnetic resonance of patients with complex congenital heart diseases. J Cardiovasc Magn Reson 2020; 22:80.
[40] Warmerdam EG, Neijzen RL, Voskuil M, Leiner T, Grotenhuis HB. Four-dimensional flow CMR in tetralogy of fallot: current perspectives. Br J Radiol 2022; 95:20210298.
[41] Kohi MP, Ordovas KG, Naeger DM, Meadows AK, Foster E, Higgins CB. CMR assessment of right ventricular function in patients with combined pulmonary stenosis and insufficiency after correction of tetralogy of Fallot. Acta Br J Radiol 2013; 54:1132-1137.
[42] Ouyang R, Leng S, Sun A, Wang Q, Hu L, Zhao X, et al. Detection of persistent systolic and diastolic abnormalities in asymptomatic pediatric repaired tetralogy of Fallot patients with preserved ejection fraction: a CMR feature tracking study. Eur Radiol 2021; 31:6156-6168.
[43] Arrigo M, Jessup M, Mullens W, Reza N, Shah AM, Sliwa K, et al. Acute heart failure. Nat Rev Dis Primers 2020; 6:16.
[44] Daal MRR, Strijkers GJ, Hautemann DJ, Nederveen AJ, Wüst RCI, Coolen BF. Longitudinal CMR assessment of cardiac global longitudinal strain and hemodynamic forces in a mouse model of heart failure. Int J Cardiovasc Imaging 2022; 38:2385-2394.
[45] Vita T, Gr?ni C, Abbasi SA, Neilan TG, Rowin E, Kaneko K, et al. Comparing cmr mapping methods and myocardial patterns toward heart failure outcomes in nonischemic dilated cardiomyopathy. JACC: Cardiovasc Imaging 2019; 12:1659-1669.
[46] Li H, Zheng Y, Peng X, Liu H, Li Y, Tian Z, et al. Heart failure with preserved ejection fraction in post myocardial infarction patients: a myocardial magnetic resonance (MR) tissue tracking study. Quant Imaging Med Surg 2023; 13:1723-1739.
[47] Moustafa A, Khan MS, Alsamman MA, Jamal F, Atalay MK. Prognostic significance of T1 mapping parameters in heart failure with preserved ejection fraction: a systematic review. Heart Fail Rev 2021; 26:1325-1331.
[48] Pezel T, Hovasse T, Sanguineti F, Kinnel M, Garot P, Champagne S, et al. Long-Term prognostic value of stress CMR in patients with heart failure and preserved ejection fraction. JACC: Cardiovasc Imaging 2021; 14:2319-2333.
[49] Mascherbauer J, Marzluf BA, Tufaro C, Pfaffenberger S, Graf A, Wexberg P, et al. Cardiac magnetic resonance postcontrast T1 time is associated with outcome in patients with heart failure and preserved ejection fraction. Circ: Cardiovasc Imaging 2013; 6:1056-1065.
[50] Ambale-Venkatesh B, Lima JAC. Human-in-the-Loop artificial intelligence in cardiac mri. Radiology 2022; 305:80-81.
[51] Yuan W-F, Zhao X-X, Hu FB, Bai C, Tang F. Evaluation of early gadolinium enhancement (EGE) and cardiac functional parameters in cine-magnetic resonance imaging (MRI) on artificial intelligence in patients with acute myocarditis: a case-controlled observational study. Med Sci Monit 2019; 25:5493-5500.
[52] Argentiero A, Muscogiuri G, Rabbat MG, Martini C, Soldato N, Basile P, et al. The applications of artificial intelligence in cardiovascular magnetic resonance-a comprehensive review. J Clin Med 2022; 11:2866.
[53] Cau R, Cherchi V, Micheletti G, Porcu M, Mannelli L, Bassareo P, et al. Potential role of Artificial Intelligence in cardiac magnetic resonance imaging: can it help clinicians in making a diagnosis? J Thorac Imaging 2021; 36:142-148.
[54] Edelman RR, Leloudas N, Pang J, Koktzoglou I. Dark blood cardiovascular magnetic resonance of the heart, great vessels, and lungs using electrocardiographic-gated three-dimensional unbalanced steady-state free precession. J Cardiovasc Magn Reson 2021; 23:127.
[55] Farooqi KM, Cooper C, Chelliah A, Saeed O, Chai PJ, Jambawalikar SR, et al. 3D printing and heart failure. JACC: Heart Fail 2019; 7:132-142.
[56] Moghari MH, Van Der Geest RJ, Brighenti M, Powell AJ. Cardiac magnetic resonance using fused 3D cine and 4D flow sequences:validation of ventricular and blood flow measurements. Magn Reson Imaging 2020; 74:203-212.
[57] Qi H, Jaubert O, Bustin A, Cruz G, Chen H, Botnar R, et al. Free-running 3D whole heart myocardial T1 mapping with isotropic spatial resolution. Magn Reson Med 2019; 82:1331-1342.
[58] Craven TP, Tsao CW, La Gerche A, Simonetti OP, Greenwood JP. Exercise cardiovascular magnetic resonance: development, current utility and future applications. J Cardiovasc Magn Reson 2020; 22:65.
[59] Jone PN, Ivy DD, Hauck A, Karamlou T, Truong U, Coleman RD, et al. Pulmonary hypertension in congenital heart disease: A scientific statement from the American Heart Association. Circ Heart Fail. 2023; 16:e00080.
[60] Kramer CM, Barkhausen J, Bucciarelli-Ducci C, Flamm SD, Kim RJ, Nagel E. Standardized cardiovascular magnetic resonance imaging (CMR) protocols: 2020 update. J Cardiovasc Magn Reson 2020; 22:17.
[61] Kording F, Yamamura J, de Sousa MT, Ruprecht C, Hedstr?m E, Aletras AH, et al. Dynamic fetal cardiovascular magnetic resonance imaging using Doppler ultrasound gating. J Cardiovasc Magn Reson. 2018; 20:17.
Outlines

/