Advanced Ultrasound in Diagnosis and Therapy ›› 2023, Vol. 7 ›› Issue (2): 73-81.doi: 10.37015/AUDT.2023.230019
• Review Articles • Previous Articles Next Articles
Rendong Chen, PhDa, Xiaoqian Wang, BSa, Ping Liang, MDb, Xiaoping Ouyang, PhDc, Dexing Kong, PhDd,*()
Received:
2023-03-31
Revised:
2023-04-07
Accepted:
2023-04-22
Online:
2023-06-30
Published:
2023-04-27
Contact:
Dexing Kong, PhD,
E-mail:dxkong@zju.edu.cn
Rendong Chen, PhD, Xiaoqian Wang, BS, Ping Liang, MD, Xiaoping Ouyang, PhD, Dexing Kong, PhD. Intelligent Ultrasonic Diagnosis and Clinical Application: Technical Development and Prospectives. Advanced Ultrasound in Diagnosis and Therapy, 2023, 7(2): 73-81.
[1] |
Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, et al. The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository. J DIGIT IMAGING 2013; 26:1045-1057.
doi: 10.1007/s10278-013-9622-7 pmid: 23884657 |
[2] | Armato III SG, McLennan G, Bidaut L, McNitt-Gray MF, Meyer CR, Reeves AP, et al. The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans. Med Phys 2011; 38:915-931. |
[3] |
Kurdi B, Lozano S, Banaji MR. Introducing the open affective standardized image set (OASIS). Behav Res Methods 2017; 49:457-470.
doi: 10.3758/s13428-016-0715-3 |
[4] |
Di Martino A, Yan C-G, Li Q-Y, Denio E, Castellanos FX, Alaerts K, et al. The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Molecular psychiatry 2014; 19:659-667.
doi: 10.1038/mp.2013.78 pmid: 23774715 |
[5] | Jia Y-Q, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, et al. Caffe: convolutional architecture for fast feature embedding. Proceedings of the 22nd ACM international conference on Multimedia 2014;675-678. |
[6] | Chen TQ, Li M, Li YT, Lin M, Wang NY, Wang MJ, et al. Mxnet: a flexible and efficient machine learning library for heterogeneous distributed systems. arXiv preprint arXiv 151201274.2015. |
[7] | Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z-F, Citro C, et al. Tensorflow: large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv 160304467.2016. |
[8] | Collobert R, Kavukcuoglu K, Farabet C. Torch7: a matlab-like environment for machine learning. BigLearn, NIPS workshop 2011. |
[9] | Wu F, Hu P-J, Kong D-X. Flip-rotate-pooling convolution and split dropout on convolution neural networks for image classification. arXiv preprint arXiv 150708754.2015. |
[10] |
Ma J-L, Wu F, Zhu J, Xu D, Kong D-X. A pre-trained convolutional neural network based method for thyroid nodule diagnosis. Ultrasonics 2016; 73:221-230.
doi: 10.1016/j.ultras.2016.09.011 |
[11] | Redmon J, Divvala S, Girshick R, Farhadi A. You only look once: Unified, real-time object detection. IEEE Conference on Computer Vision and Pattern Recognition 2016;779-788. |
[12] | Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu C-Y, et al. SSD: single shot multibox detector. European conference on computer vision 2016;21-37. |
[13] | Lin T-Y, Dollr P, Girshick R, He K, Hariharan B, Belongie S. Feature pyramid networks for object detection. IEEE Conference on Computer Vision and Pattern Recognition 2017;936-944. |
[14] |
Liu TJ, Guo QQ, Lian CF, Ren XH, Liang SJ, Yu J, et al. Automated detection and classification of thyroid nodules in ultrasound images using clinical-knowledge-guided convolutional neural networks. Med Image Anal 2019; 58:101555.
doi: 10.1016/j.media.2019.101555 |
[15] |
Wang Y, Mao L, Yu M-A, Wei Y, Hao C, Dong D-F. Automatic recognition of parathyroid nodules in ultrasound images based on fused prior pathological knowledge features. IEEE Access 2021; 9:69626-69634.
doi: 10.1109/ACCESS.2021.3075226 |
[16] |
Vourtsis A. Three-dimensional automated breast ultrasound: technical aspects and first results. Diagn Interventional Imaging 2019; 100:579-592.
doi: 10.1016/j.diii.2019.03.012 |
[17] |
Wang Y, Wang N, Xu M, Yu JX, Qin CC, Luo X, et al. Deeply-supervised networks with threshold loss for cancer detection in automated breast ultrasound. IEEE Trans Med Imaging 2020; 39:866-876.
doi: 10.1109/TMI.42 |
[18] |
Shen Y-Q, Wu N, Phang J, Park J, Liu K-N, Tyagi S, et al. An interpretable classifier for high-resolution breast cancer screening images utilizing weakly supervised localization. Med Image Anal 2021; 68:101908.
doi: 10.1016/j.media.2020.101908 |
[19] |
Wu X-Q, Tan G-H, Zhu N-B, Chen Z-L, Yang Y, Wen H-X, et al. CacheTrack-YOLO: real-time detection and tracking for thyroid nodules and surrounding tissues in ultrasound videos. IEEE J Biomed Health Inform 2021; 25:3812-3823.
doi: 10.1109/JBHI.2021.3084962 |
[20] |
Wan P, Chen F, Liu CR, Kong WT, Zhang DQ. Hierarchical temporal attention network for thyroid nodule recognition using dynamic CEUS imaging. IEEE Trans Med Imaging 2021; 40:1646-1660.
doi: 10.1109/TMI.2021.3063421 |
[21] |
Ma LF, Tan GH, Luo HX, Liao Q, Li SL, Li KL. A novel deep learning framework for automatic recognition of thyroid gland and tissues of neck in ultrasound image. IEEE Trans Circuits Syst Video Technol 2022; 32:6113-6124.
doi: 10.1109/TCSVT.2022.3157828 |
[22] |
Arif M, Moelker A, van Walsum T. Automatic needle detection and real-time Bi-planar needle visualization during 3D ultrasound scanning of the liver. Med Image Anal 2019; 53:104-110.
doi: S1361-8415(18)30341-4 pmid: 30763829 |
[23] |
Huang R, Xie W, Noble JA. VP-Nets: Efficient automatic localization of key brain structures in 3D fetal neurosonography. Medical image analysis 2018; 47:127-139.
doi: 10.1016/j.media.2018.04.004 |
[24] | Chen H, Dou Q, Ni D, Cheng JZ, Qin J, Li S, et al. Automatic fetal ultrasound standard plane detection using knowledge transferred recurrent neural networks. Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention 2015;507-514. |
[25] |
Chen H, Ni D, Qin J, Li S, Yang X, Wang T, et al. Standard plane localization in fetal ultrasound via domain transferred deep neural networks. IEEE J Biomed Health Inform 2015; 19:1627-1636.
doi: 10.1109/JBHI.2015.2425041 |
[26] |
Shin H-C, Roth HR, Gao M, Lu L, Xu Z-Y, Nogues I, et al. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging 2016; 35:1285-1298.
doi: 10.1109/TMI.42 |
[27] |
Ning Z, Zhong S, Feng Q, Chen W, Zhang Y. SMU-Net: saliency-guided morphology-aware U-Net for breast lesion segmentation in ultrasound image. IEEE Trans Med Imaging 2022; 41:476-490.
doi: 10.1109/TMI.2021.3116087 |
[28] |
Gare GR, Li J, Joshi R, Magar R, Vaze MP, Yousefpour M, et al. W-Net: dense and diagnostic semantic segmentation of subcutaneous and breast tissue in ultrasound images by incorporating ultrasound RF waveform data. Med Image Anal 2022; 76:102326.
doi: 10.1016/j.media.2021.102326 |
[29] |
Li L, Hu Z, Huang Y, Zhu W, Wang Y, Chen M, et al. Automatic multi-plaque tracking and segmentation in ultrasonic videos. Med Image Anal 2021; 74:102201.
doi: 10.1016/j.media.2021.102201 |
[30] |
Xu X, Sanford T, Turkbey B, Xu S, Wood BJ, Yan P. Polar transform network for prostate ultrasound segmentation with uncertainty estimation. Med Image Anal 2022; 78:102418.
doi: 10.1016/j.media.2022.102418 |
[31] |
Li Y, Liu Y, Huang L, Wang Z, Luo J. Deep weakly-supervised breast tumor segmentation in ultrasound images with explicit anatomical constraints. Med Image Anal 2022; 76:102315.
doi: 10.1016/j.media.2021.102315 |
[32] | Lee H, Park J, Hwang JY. Channel attention module with multiscale grid average pooling for breast cancer segmentation in an ultrasound image. IEEE Trans Ultrason, Ferroelect, Freq Contr 2020; 67:1344-1353. |
[33] |
Xue C, Zhu L, Fu H, Hu X, Li X, Zhang H, et al. Global guidance network for breast lesion segmentation in ultrasound images. Med Image Anal 2021; 70:101989.
doi: 10.1016/j.media.2021.101989 |
[34] |
Huang R, Lin M, Dou H, Lin Z, Ying Q, Jia X, et al. Boundary-rendering network for breast lesion segmentation in ultrasound images. Med Image Anal 2022; 80:102478.
doi: 10.1016/j.media.2022.102478 |
[35] |
Zhou Y, Chen H, Li Y, Liu Q, Xu X, Wang S, et al. Multi-task learning for segmentation and classification of tumors in 3D automated breast ultrasound images. Med Image Anal 2021; 70:101918.
doi: 10.1016/j.media.2020.101918 |
[36] |
Zhou Y, Chen H, Li Y, Cao X, Wang S, Shen D. Cross-model attention-guided tumor segmentation for 3D automated breast ultrasound (ABUS) images. IEEE J Biomed Health Inform 2022; 26:301-311.
doi: 10.1109/JBHI.2021.3081111 |
[37] |
Kang Q, Lao Q, Li Y, Jiang Z, Qiu Y, Zhang S, et al. Thyroid nodule segmentation and classification in ultrasound images through intra- and inter-task consistent learning. Med Image Anal 2022; 79:102443.
doi: 10.1016/j.media.2022.102443 |
[38] |
Song W-F, Li S, Liu J, Qin H, Zhang B, Zhang S-Y, et al. Multitask cascade convolution neural networks for automatic thyroid nodule detection and recognition. IEEE J Biomed Health Inform 2019; 23:1215-1224.
doi: 10.1109/JBHI.6221020 |
[39] | Zhang H, Zhao CK, Guo LH, Li XL, Luo Y, Lu JW, et al. Diagnosis of thyroid nodules in ultrasound images using two combined classification modules. 2019 12th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI) 2019;1-5. |
[40] | Buda M, Wildmantobriner B, Hoang JK, Thayer D, Tessler FN, Middleton WD, et al. Management of thyroid nodules seen on US images: deep learning may match performance of radiologists. Radiology 2019; 292:695-701. |
[41] |
Zhou YJ, Xu JX, Liu QG, Li C, Liu ZY, Wang MY, et al. A radiomics approach with CNN for shear-wave elastography breast tumor classification. IEEE Trans Biomed Eng 2018; 65:1935-1942.
doi: 10.1109/TBME.2018.2844188 pmid: 29993469 |
[42] |
Qin PL, Wu K, Hu YS, Zeng JC, Chai XF. Diagnosis of benign and malignant thyroid nodules using combined conventional ultrasound and ultrasound elasticity imaging. IEEE J Biomed Health Inform 2020; 24:1028-1036.
doi: 10.1109/JBHI.6221020 |
[43] |
Wang L, Zhang L, Zhu M, Qi X, Yi Z. Automatic diagnosis for thyroid nodules in ultrasound images by deep neural networks. Med Image Anal 2020; 61:101665.
doi: 10.1016/j.media.2020.101665 |
[44] |
Liao WX, He P, Hao J, Wang XY, Yang RL, An D, et al. Automatic identification of breast ultrasound image based on supervised block-based region segmentation algorithm and features combination migration deep learning model. IEEE J Biomed Health Inform 2020; 24:984-993.
doi: 10.1109/JBHI.6221020 |
[45] |
Misra S, Jeon S, Managuli R, Lee S, Kim G, Yoon C, et al. Bi-modal transfer learning for classifying breast cancers via combined B-mode and ultrasound strain imaging. IEEE Trans Ultrason, Ferroelect, Freq Contr 2022; 69:222-232.
doi: 10.1109/TUFFC.2021.3119251 |
[46] |
Shao Y, Hashemi HS, Gordon P, Warren L, Wang J, Rohling R, et al. Breast cancer detection using multimodal time series features from ultrasound shear wave absolute vibro-elastography. IEEE J Biomed Health Inform 2022; 26:704-714.
doi: 10.1109/JBHI.2021.3103676 |
[47] |
Qiao MY, Liu CC, Li ZJ, Zhou J, Xiao Q, Zhou SC, et al. Breast tumor classification based on MRI-US images by disentangling modality features. IEEE J Biomed Health Inform 2022; 26:3059-3067.
doi: 10.1109/JBHI.2022.3140236 |
[48] |
Huang RB, Lin ZH, Dou HR, Wang J, Miao JZ, Zhou GQ, et al. AW3M: an auto-weighting and recovery framework for breast cancer diagnosis using multi-modal ultrasound. Med Image Anal 2021; 72:102137.
doi: 10.1016/j.media.2021.102137 |
[49] |
Chen C, Wang Y, Niu JW, Liu XF, Li Q, Gong XT. Domain knowledge powered deep learning for breast cancer diagnosis based on contrast-enhanced ultrasound videos. IEEE Trans Med Imaging 2021; 40:2439-2451.
doi: 10.1109/TMI.2021.3078370 |
[50] |
Zhang HL, Guo LH, Wang D, Wang J, Bao LL, Ying SH, et al. Multi-source transfer learning via multi-kernel support vector machine plus for B-mode ultrasound-based computer-aided diagnosis of liver cancers. IEEE J Biomed Health Inform 2021; 25:3874-3885.
doi: 10.1109/JBHI.2021.3073812 |
[51] | Guo F-Q, Jia-Qi Z, Chen R, Liu S. Efficacy of preoperative ultrasound evaluation of thyroid nodules by artificial intelligence automatic detection system version 2.0: a preliminary study. Acad J Sec Mil Med Univ 2020; 41:1077-1083. [In Chinese] |
[52] | Gong ZJ, Yang HX, Yang Q, Wang Y, Xin J, Gu JY. Preliminary study of diagnostic value of AI intelligent assistant diagnostic system for thyroid nodules. J Chin Clin Med Imaging 2021; 32:781-788. [In Chinese] |
[1] | Rui Chen, MM, Fangqi Guo, MM, Jia Guo, MD, Jiaqi Zhao, MD. Application and Prospect of AI and ABVS-based in Breast Ultrasound Diagnosis [J]. Advanced Ultrasound in Diagnosis and Therapy, 2023, 7(2): 130-135. |
[2] | Shujun Xia, MD, Jianqiao Zhou, MD. Ultrasound Image Generation and Modality Conversion Based on Deep Learning [J]. Advanced Ultrasound in Diagnosis and Therapy, 2023, 7(2): 136-139. |
[3] | Won-Chul Bang, PhD, Vice President, Yeong Kyeong Seong, PhD, Jinyong Lee. The Impact of Deep Learning on Ultrasound in Diagnosis and Therapy: Enhancing Clinical Decision Support, Workflow Efficiency, Quantification, Image Registration, and Real-time Assistance [J]. Advanced Ultrasound in Diagnosis and Therapy, 2023, 7(2): 204-216. |
[4] | Siyi Xun, MA, Wei Ke, PhD, Mingfu Jiang, MA, Huachao Chen, BA, Haoming Chen, BA, Chantong Lam, PhD, Ligang Cui, MD, Tao Tan, PhD. Current Status, Prospect and Bottleneck of Ultrasound AI Development: A Systemic Review [J]. Advanced Ultrasound in Diagnosis and Therapy, 2023, 7(2): 61-72. |
[5] | Changyan Wang, BS, Haobo Chen, MS, Jieyi Liu, BS, Changchun Li, BS, Weiwei Jiao, BS, Qihui Guo, BS, Qi Zhang, PhD. Deep Learning on Ultrasound Imaging for Breast Cancer Diagnosis and Treatment: Current Applications and Future Perspectives [J]. Advanced Ultrasound in Diagnosis and Therapy, 2023, 7(2): 91-113. |
[6] | Jingfang Dong, MD, Jianyun Wang, MD, Xiangzhu Wang, MD. Predicting Malignancy in Sonographic Features of Thyroid Nodules Using Convolutional Neural Networks ResNet50 Model [J]. Advanced Ultrasound in Diagnosis and Therapy, 2023, 7(1): 16-22. |
[7] | Shuo Wang, BS, Ji-Bin Liu, MD, Ziyin Zhu, MD, John Eisenbrey, PhD. Artificial Intelligence in Ultrasound Imaging: Current Research and Applications [J]. Advanced Ultrasound in Diagnosis and Therapy, 2019, 3(3): 53-61. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Share: WeChat
Copyright ©2018 Advanced Ultrasound in Diagnosis and Therapy
|
Advanced Ultrasound in Diagnosis and Therapy (AUDT) a> is licensed under a Creative Commons Attribution 4.0 International License a>.