Advanced Ultrasound in Diagnosis and Therapy ›› 2022, Vol. 6 ›› Issue (4): 153-164.doi: 10.37015/AUDT.2022.210033
• Review Articles • Previous Articles Next Articles
Yongyue Zhang, MMa,1, Yang Sun, MMa,1, Li Zhang, MMa, Rongjin Zhang, MMa, Shumin Wang, PhDa,*()
Received:
2021-10-21
Revised:
2021-12-14
Accepted:
2021-12-28
Online:
2022-12-30
Published:
2022-10-25
Contact:
Shumin Wang, PhD,
E-mail:shuminwang2014@163.com
About author:
First author contact:1 Yongyue Zhang and Yang Sun contributed equally to this work.
Yongyue Zhang, MM, Yang Sun, MM, Li Zhang, MM, Rongjin Zhang, MM, Shumin Wang, PhD. Functional Brain Imaging Based on the Neurovascular Unit for Evaluating Neural Networks after Stroke. Advanced Ultrasound in Diagnosis and Therapy, 2022, 6(4): 153-164.
Figure 1
Pathological changes in components of a single neurovascular unit after stroke. The cerebral microcirculatory system and neural network are intertwined in three-dimensional topological space to form a "vine-like" structure. At the embolic site, local ischemia leads to the deposition of toxic fibrinogen in the vascular lumen, the swelling of astrocytic endfeet, and the activation of proinflammatory (M1-type) microglia induced by damage to adjacent neurons. The resulting proinflammatory reactions further aggravate neuronal dysfunction and expansion of the infarct area."
Figure 2
Repair mechanisms of neurovascular unit components in the stroke recovery period. The changes involved in this process include the transformation of microglia from a pro-inflammatory to an anti-inflammatory phenotype, and the secretion by astrocytes of neurotrophic factors and exosomes. Endothelial cells are also involved through the secretion of vascular endothelial growth factor."
[1] |
Ansado J, Chasen C, Bouchard S, Iakimova G, Northoff G. How brain imaging provides predictive biomarkers for therapeutic success in the context of virtual reality cognitive trainin. Neurosci Biobehav Rev 2021; 120: 583-594.
doi: 10.1016/j.neubiorev.2020.05.018 |
[2] |
Ecker C, Bookheimer SY, Murphy DGM. Neuroimaging in autism spectrum disorder: brain structure and function across the lifespa. Lancet Neurol 2015; 14: 1121-1134.
doi: 10.1016/S1474-4422(15)00050-2 |
[3] |
Andreone BJ, Lacoste B, Gu C. Neuronal and vascular interaction. Annu Rev Neurosci 2015; 38: 25-46.
doi: 10.1146/annurev-neuro-071714-033835 |
[4] | Kisler K, Nelson AR, Montagne A, Zlokovic BV. Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer diseas. Nat Rev Neurosci 2017; 18: 419-434. |
[5] |
Roy CS, Sherrington CS. On the regulation of the blood-supply of the brai. J Physiol (Lond) 1890; 11: 85-158.17.
doi: 10.1113/jphysiol.1890.sp000321 |
[6] |
Brainin M, Tuomilehto J, Heiss WD, Bornstein NM, Bath PM, Teuschl Y, et al. Post-stroke cognitive decline: an update and perspectives for clinical researc. Eur J Neurol 2015; 22: 229-238, e213-226.
doi: 10.1111/ene.12626 pmid: 25492161 |
[7] |
Hachinski V, Einhaupl K, Ganten D, Alladi S, Brayne C, Stephan BCM, et al. Preventing dementia by preventing stroke: the berlin manifest. Alzheimers Dement 2019; 15: 961-984.
doi: S1552-5260(19)30144-X pmid: 31327392 |
[8] |
Guggisberg AG, Koch PJ, Hummel FC, Buetefisch CM. Brain networks and their relevance for stroke rehabilitatio. Clin Neurophysiol 2019; 130: 1098-1124.
doi: S1388-2457(19)30127-0 pmid: 31082786 |
[9] |
Hartwigsen G, Saur D. Neuroimaging of stroke recovery from aphasia - insights into plasticity of the human language networ. Neuroimage 2019; 190: 14-31.
doi: S1053-8119(17)31000-5 pmid: 29175498 |
[10] |
Garcia-Esperon C, Bivard A, Levi C, Parsons M. Use of computed tomography perfusion for acute stroke in routine clinical practice: complex scenarios, mimics, and artifact. Int J Stroke 2018; 13: 469-472.
doi: 10.1177/1747493018765493 pmid: 29543142 |
[11] |
Schulz UG, Fischer U. Posterior circulation cerebrovascular syndromes: diagnosis and managemen. J Neurol Neurosurg Psychiatry 2017; 88: 45-53.
doi: 10.1136/jnnp-2015-311299 |
[12] |
Larovere KL. Transcranial doppler ultrasound in children with stroke and cerebrovascular disorder. Curr Opin Pediatr 2015; 27: 712-718.
doi: 10.1097/MOP.0000000000000282 |
[13] |
Iadecola C. The Neurovascular unit coming of age: a journey through neurovascular coupling in health and diseas. Neuron 2017; 96: 17-42.
doi: 10.1016/j.neuron.2017.07.030 |
[14] |
Netto JP, Iliff J, Stanimirovic D, Krohn KA, Hamilton B, Varallyay C, et al. Neurovascular unit: basic and clinical imaging with emphasis on advantages of ferumoxyto. Neurosurgery 2018; 82: 770-780.
doi: 10.1093/neuros/nyx357 |
[15] |
De Silva TM, Faraci FM.Microvascular dysfunction and cognitive impairment. Cell Mol Neurobiol 2016; 36: 241-258.
doi: 10.1007/s10571-015-0308-1 pmid: 26988697 |
[16] |
Zhang JH, Badaut J, Tang J, Obenaus A, Hartman R, Pearce WJ. The vascular neural network--a new paradigm in stroke pathophysiolo. Nat Rev Neurol 2012; 8: 711-716.
doi: 10.1038/nrneurol.2012.210 pmid: 23070610 |
[17] |
Muoio V, Persson PB, Sendeski MM. The neurovascular unit - concept revie. Acta physiologica (Oxford, England) 2014; 210: 790-798.
doi: 10.1111/apha.12250 |
[18] |
Jayaraj RL, Azimullah S, Beiram R, Jalal FY, Rosenberg GA. Neuroinflammation: friend and foe for ischemic strok. J Neuroinflammation 2019; 16: 142.
doi: 10.1186/s12974-019-1516-2 |
[19] | Amtul Z, Hepburn JD. Protein markers of cerebrovascular disruption of neurovascular unit: immunohistochemical and imaging approache. Rev Neurosci 2014; 25: 481-507. |
[20] |
Rijntjes M, Weiller C. Recovery of motor and language abilities after stroke: the contribution of functional imagin. Progress in neurobiology 2002; 66: 109-122.
pmid: 11900884 |
[21] |
Raichle ME, Mintun MA. Brain work and brain imagin. Annual Review of Neuroscience 2006; 29: 449-476.
pmid: 16776593 |
[22] |
Tarasoff-Conway JM, Carare RO, Osorio RS, Glodzik L, Butler T, Fieremans E, et al. Clearance systems in the brain-implications for Alzheimer diseas. Nat Rev Neurol 2015; 11: 457-470.
doi: 10.1038/nrneurol.2015.119 pmid: 26195256 |
[23] | Freeman RD, Li B. Neural-metabolic coupling in the central visual pathwa. Philos Trans R Soc Lond B Biol Sci 2016; 371: 20150357. |
[24] |
Segarra M, Aburto MR, Hefendehl J, Acker-Palmer A. Neurovascular interactions in the nervous syste. Annu Rev Cell Dev Biol 2019; 35: 615-635.
doi: 10.1146/annurev-cellbio-100818-125142 pmid: 31590587 |
[25] |
Cheslow L, Alvarez JI. Glial-endothelial crosstalk regulates blood-brain barrier functio. Curr Opin Pharmacol 2016; 26: 39-46.
doi: 10.1016/j.coph.2015.09.010 pmid: 26480201 |
[26] |
Zlokovic BV. The blood-brain barrier in health and chronic neurodegenerative disorder. Neuron 2008; 57: 178-201.
doi: 10.1016/j.neuron.2008.01.003 |
[27] |
Sweeney MD, Ayyadurai S, Zlokovic BV. Pericytes of the neurovascular unit: key functions and signaling pathway. Nature neuroscience 2016; 19: 771-783.
doi: 10.1038/nn.4288 |
[28] | Hall CN, Reynell C, Gesslein B, Hamilton NB, Mishra A, Sutherland BA, et al. Capillary pericytes regulate cerebral blood flow in health and diseas. Nature 2014; 508: 55-60. |
[29] | Brown LS, Foster CG, Courtney JM, King NE, Howells DW, Sutherland BA. Pericytes and neurovascular function in the healthy and diseased brai. Front Cell Neurosci 2019; 13: 282. |
[30] |
Colonna M, Butovsky O. Microglia function in the central nervous system during health and neurodegeneratio. Annu Rev Immunol 2017; 35: 441-468.
doi: 10.1146/annurev-immunol-051116-052358 pmid: 28226226 |
[31] |
Dudvarski Stankovic N, Teodorczyk M, Ploen R, Zipp F, Schmidt MHH. Microglia-blood vessel interactions: a double-edged sword in brain pathologie. Acta Neuropathol 2016; 131: 347-363.
doi: 10.1007/s00401-015-1524-y pmid: 26711460 |
[32] |
Donahue MJ, Hendrikse J. Improved detection of cerebrovascular disease processes: Introduction to the journal of cerebral blood flow and metabolism special issue on cerebrovascular diseas. J Cereb Blood Flow Metab 2018; 38: 1387-1390..
doi: 10.1177/0271678X17739802 |
[33] |
Campbell BCV, De Silva DA, Macleod MR, Coutts SB, Schwamm LH, Davis SM, et al. Ischaemic strok. Nat Rev Dis Primers 2019; 5: 70.
doi: 10.1038/s41572-019-0118-8 pmid: 31601801 |
[34] |
Fisher M, Saver JL. Future directions of acute ischaemic stroke therap. Lancet Neurol 2015; 14: 758-767.
doi: 10.1016/S1474-4422(15)00054-X pmid: 26067128 |
[35] |
Knowland D, Arac A, Sekiguchi KJ, Hsu M, Lutz SE, Perrino J, et al. Stepwise recruitment of transcellular and paracellular pathways underlies blood-brain barrier breakdown in strok. Neuron 2014; 82: 603-617.
doi: 10.1016/j.neuron.2014.03.003 pmid: 24746419 |
[36] |
Attwell D, Buchan AM, Charpak S, Lauritzen M, Macvicar BA, Newman EA. Glial and neuronal control of brain blood flo. Nature 2010; 468: 232-243.
doi: 10.1038/nature09613 |
[37] |
Liddelow SA, Barres BA. Reactive astrocytes: production, function, and therapeutic potentia. Immunity 2017; 46: 957-967.
doi: S1074-7613(17)30234-0 pmid: 28636962 |
[38] |
Montagne A, Nikolakopoulou AM, Zhao Z, Sagare AP, Si G, Lazic D, et al. Pericyte degeneration causes white matter dysfunction in the mouse central nervous syste. Nature medicine 2018; 24: 326-337.
doi: 10.1038/nm.4482 pmid: 29400711 |
[39] |
Qin C, Zhou LQ, Ma XT, Hu ZW, Yang S, Chen M, et al. Dual functions of microglia in ischemic strok. Neurosci Bull 2019; 35: 921-933.
doi: 10.1007/s12264-019-00388-3 |
[40] |
Thurgur H, Pinteaux E. Microglia in the neurovascular unit: blood-brain barrier-microglia interactions after central nervous system disorder. Neuroscience 2019; 405: 55-67.
doi: S0306-4522(18)30464-0 pmid: 31007172 |
[41] | Khatri R, Mckinney AM, Swenson B, Janardhan V. Blood-brain barrier, reperfusion injury, and hemorrhagic transformation in acute ischemic stroke. Neurology 2012; 79: S52-S57. |
[42] |
Shen P, Hou S, Zhu M, Zhao M, Ouyang Y, Feng J. Cortical spreading depression preconditioning mediates neuroprotection against ischemic stroke by inducing AMP-activated protein kinase-dependent autophagy in a rat cerebral ischemic/reperfusion injury mode. Journal of neurochemistry 2017; 140: 799-813.
doi: 10.1111/jnc.13922 |
[43] |
Aguzzi A, Barres BA, Bennett ML. Microglia: scapegoat, saboteur, or something els?. Science 2013; 339: 156-161.
doi: 10.1126/science.1227901 |
[44] |
Guruswamy R, Elali A. Complex roles of microglial cells in ischemic stroke pathobiology: new insights and future direction. Int J Mol Sci 2017; 18: 496.
doi: 10.3390/ijms18030496 |
[45] |
Eldahshan W, Fagan SC, Ergul A. Inflammation within the neurovascular unit: Focus on microglia for stroke injury and recover. Pharmacol Res 2019; 147: 104349.
doi: 10.1016/j.phrs.2019.104349 |
[46] |
Ritzel RM, Lai Y-J, Crapser JD, Patel AR, Schrecengost A, Grenier JM, et al. Aging alters the immunological response to ischemic strok. Acta neuropathologica 2018; 136: 89-110.
doi: 10.1007/s00401-018-1859-2 |
[47] |
Nation DA, Sweeney MD, Montagne A, Sagare AP, D'orazio LM, Pachicano M, et al. Blood-brain barrier breakdown is an early biomarker of human cognitive dysfunctio. Nature medicine 2019; 25: 270-276.
doi: 10.1038/s41591-018-0297-y pmid: 30643288 |
[48] |
Jiang X, Suenaga J, Pu H, Wei Z, Smith AD, Hu X, et al. Post-stroke administration of omega-3 polyunsaturated fatty acids promotes neurovascular restoration after ischemic stroke in mice: efficacy declines with agin. Neurobiology of disease 2019; 126: 62-75.
doi: 10.1016/j.nbd.2018.09.012 |
[49] |
Cai W, Zhang K, Li P, Zhu L, Xu J, Yang B, et al. Dysfunction of the neurovascular unit in ischemic stroke and neurodegenerative diseases: An aging effec. Ageing Res Rev 2017; 34: 77-87.
doi: 10.1016/j.arr.2016.09.006 |
[50] |
Anrather J, Iadecola C. Inflammation and stroke: an overvie. Neurotherapeutics 2016; 13: 661-670.
doi: 10.1007/s13311-016-0483-x pmid: 27730544 |
[51] |
Ponomarev ED, Veremeyko T, Weiner HL. MicroRNAs are universal regulators of differentiation, activation, and polarization of microglia and macrophages in normal and diseased CNS. Glia 2013; 61: 91-103.
doi: 10.1002/glia.22363 pmid: 22653784 |
[52] |
Rahimian R, Lively S, Abdelhamid E, Lalancette-Hebert M, Schlichter L, Sato S, et al. Delayed galectin-3-mediated reprogramming of microglia after stroke is protectiv. Mol Neurobiol 2019; 56: 6371-6385.
doi: 10.1007/s12035-019-1527-0 pmid: 30798442 |
[53] |
Hayakawa K, Esposito E, Wang X, Terasaki Y, Liu Y, Xing C, et al. Transfer of mitochondria from astrocytes to neurons after strok. Nature 2016; 535: 551-555.
doi: 10.1038/nature18928 |
[54] |
Hira K, Ueno Y, Tanaka R, Miyamoto N, Yamashiro K, Inaba T, et al. Astrocyte-derived exosomes treated with a semaphorin 3A inhibitor enhance stroke recovery via prostaglandin D synthas. Stroke 2018; 49: 2483-2494.
doi: 10.1161/STROKEAHA.118.021272 |
[55] |
Carmeliet P, Ruiz De Almodovar C. VEGF ligands and receptors: implications in neurodevelopment and neurodegeneratio. Cell Mol Life Sci 2013; 70: 1763-1778.
doi: 10.1007/s00018-013-1283-7 pmid: 23475071 |
[56] |
Wu KW, Lv LL, Lei Y, Qian C, Sun FY. Endothelial cells promote excitatory synaptogenesis and improve ischemia-induced motor deficits in neonatal mic. Neurobiol Dis 2019; 121: 230-239.
doi: 10.1016/j.nbd.2018.10.006 |
[57] |
Cavaliere C, Tramontano L, Fiorenza D, Alfano V, Aiello M, Salvatore M. Gliosis and neurodegenerative diseases: the role of PET and MR imagin. Front Cell Neurosci 2020; 14: 75.
doi: 10.3389/fncel.2020.00075 pmid: 32327973 |
[58] |
Pauling L, Coryell CD. The magnetic properties and structure of hemoglobin, oxyhemoglobin and carbonmonoxyhemoglobi. Proc Natl Acad Sci USA 1936; 22: 210-216.
doi: 10.1073/pnas.22.4.210 |
[59] |
Fox PT, Raichle ME. Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subject. Proc Natl Acad Sci USA 1986; 83: 1140-1144.
doi: 10.1073/pnas.83.4.1140 |
[60] |
Ogawa S, Lee TM, Kay AR, Tank DW. Brain magnetic resonance imaging with contrast dependent on blood oxygenatio. Proc Natl Acad Sci USA 1990; 87: 9868-9872.
doi: 10.1073/pnas.87.24.9868 |
[61] |
Fracasso A, Petridou N, Dumoulin SO. Systematic variation of population receptive field properties across cortical depth in human visual corte. NeuroImage 2016; 139: 427-438.
doi: S1053-8119(16)30297-X pmid: 27374728 |
[62] |
Obata T, Liu TT, Miller KL, Luh WM, Wong EC, Frank LR, et al. Discrepancies between BOLD and flow dynamics in primary and supplementary motor areas: application of the balloon model to the interpretation of BOLD transient. NeuroImage 2004; 21: 144-153.
doi: 10.1016/j.neuroimage.2003.08.040 |
[63] |
D'esposito M, Deouell LY, Gazzaley A. Alterations in the BOLD fMRI signal with ageing and disease: a challenge for neuroimagin. Nat Rev Neurosci 2003; 4: 863-872.
doi: 10.1038/nrn1246 |
[64] |
Kim SG. Biophysics of BOLD fMRI investigated with animal model. J Magn Reson 2018; 292: 82-89.
doi: 10.1016/j.jmr.2018.04.006 |
[65] |
Deisseroth K, Etkin A, Malenka RC. Optogenetics and the circuit dynamics of psychiatric diseas. JAMA 2015; 313: 2019-20.
doi: 10.1001/jama.2015.2544 pmid: 25974025 |
[66] | Huber L, Uludag K, Moller HE. Non-BOLD contrast for laminar fMRI in humans: CB. CBV, and CMRO2. NeuroImage 2019; 197: 742-760. |
[67] |
Germuska M, Chandler HL, Stickland RC, Foster C, Fasano F, Okell TW, et al. Dual-calibrated fMRI measurement of absolute cerebral metabolic rate of oxygen consumption and effective oxygen diffusivit. NeuroImage 2019; 184: 717-728.
doi: S1053-8119(18)30820-6 pmid: 30278214 |
[68] | Bandettini PA. Functional MRI: a confluence of fortunate circumstances. Neuroimage 2012; 61: A3-A11. |
[69] |
Van Der Kolk AG, Hendrikse J, Zwanenburg JJM, Visser F, Luijten PR. Clinical applications of 7 T MRI in the brai. Eur J Radiol 2013; 82: 708-718.
doi: 10.1016/j.ejrad.2011.07.007 |
[70] |
Albrecht DS, Granziera C, Hooker JM, Loggia ML. In vivo imaging of human neuroinflammatio. ACS Chem Neurosci 2016; 7: 470-483.
doi: 10.1021/acschemneuro.6b00056 pmid: 26985861 |
[71] |
Phelps ME. Positron computed tomography studies of cerebral glucose metabolism in man: theory and application in nuclear medicin. Semin Nucl Med 1981; 11: 32-49.
pmid: 6972094 |
[72] |
Henderson TA, Cohen P, Van Lierop M, Thornton J, Mclean MK, Uszler JM, et al. A reckoning to keep doing what we are already doing with PET and SPECT functional neuroimagin. The American journal of psychiatry 2020; 177: 637-638.
doi: 10.1176/appi.ajp.2020.19080801 |
[73] |
Albrecht DS, Forsberg A, Sandström A, Bergan C, Kadetoff D, Protsenko E, et al. Brain glial activation in fibromyalgia - a multi-site positron emission tomography investigatio. Brain Behav Immun 2019; 75: 72-83.
doi: S0889-1591(18)30242-3 pmid: 30223011 |
[74] |
Chaney A, Cropper HC, Johnson EM, Lechtenberg KJ, Peterson TC, Stevens MY, et al. C-DPA-713 versus F-GE-180: a preclinical comparison of translocator protein 18 kDa PET tracers to visualize acute and chronic neuroinflammation in a mouse model of ischemic strok. J Nucl Med 2019; 60: 122-128.
doi: 10.2967/jnumed.118.209155 |
[75] |
Marchitelli R, Aiello M, Cachia A, Quarantelli M, Cavaliere C, Postiglione A, et al. Simultaneous resting-state FDG-PET/fMRI in Alzheimer disease: relationship between glucose metabolism and intrinsic activit. NeuroImage 2018; 176: 246-258.
doi: S1053-8119(18)30358-6 pmid: 29709628 |
[76] |
Papa M, De Luca C, Petta F, Alberghina L, Cirillo G. Astrocyte-neuron interplay in maladaptive plasticit. Neuroscience & Biobehavioral Reviews 2014; 42: 35-54.
doi: 10.1016/j.neubiorev.2014.01.010 |
[77] |
Salmon E, Bernard Ir C, Hustinx R. Pitfalls and limitations of PET/CT in brain imagin. Semin Nucl Med 2015; 45: 541-551.
doi: 10.1053/j.semnuclmed.2015.03.008 pmid: 26522395 |
[78] |
Vanzetta I, Grinvald A. Increased cortical oxidative metabolism due to sensory stimulation: implications for functional brain imagin. Science 1999; 286: 1555-1558.
pmid: 10567261 |
[79] |
Tak S, Ye JC. Statistical analysis of fNIRS data: a comprehensive revie. Neuroimage 2014; 85: 72-91.
doi: 10.1016/j.neuroimage.2013.06.016 |
[80] |
Akassoglou K, Merlini M, Rafalski VA, Real R, Liang L, Jin Y, et al. In Vivo imaging of CNS injury and diseas. J Neurosci 2017; 37: 10808-10816.
doi: 10.1523/JNEUROSCI.1826-17.2017 pmid: 29118209 |
[81] |
Agbangla NF, Audiffren M, Albinet CT. Use of near-infrared spectroscopy in the investigation of brain activation during cognitive aging: a systematic review of an emerging area of researc. Ageing Res Rev 2017; 38: 52-66.
doi: 10.1016/j.arr.2017.07.003 |
[82] |
Kleinschmidt A, Obrig H, Requardt M, Merboldt KD, Dirnagl U, Villringer A, et al. Simultaneous recording of cerebral blood oxygenation changes during human brain activation by magnetic resonance imaging and near-infrared spectroscop. J Cereb Blood Flow Metab 1996; 16: 817-826..
doi: 10.1097/00004647-199609000-00006 |
[83] |
Steinbrink J, Villringer A, Kempf F, Haux D, Boden S, Obrig H. Illuminating the BOLD signal: combined fMRI-fNIRS studie. Magn Reson Imaging 2006; 24: 495-505.
pmid: 16677956 |
[84] |
Anwar AR, Muthalib M, Perrey S, Galka A, Granert O, Wolff S, et al. Effective connectivity of cortical sensorimotor networks during finger movement tasks: a simultaneous fNIRS, fMRI, EEG stud. Brain Topogr 2016; 29: 645-660.
doi: 10.1007/s10548-016-0507-1 pmid: 27438589 |
[85] |
Lloyd-Fox S, Blasi A, Elwell CE. Illuminating the developing brain: the past, present and future of functional near infrared spectroscop. Neurosci Biobehav Rev 2010; 34: 269-284.
doi: 10.1016/j.neubiorev.2009.07.008 pmid: 19632270 |
[86] |
Ferrari M, Quaresima V. A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of applicatio. NeuroImage 2012; 63: 921-935.
doi: 10.1016/j.neuroimage.2012.03.049 pmid: 22510258 |
[87] |
Yu J-W, Lim S-H, Kim B, Kim E, Kim K, Kyu Park S, et al. Prefrontal functional connectivity analysis of cognitive decline for early diagnosis of mild cognitive impairment: a functional near-infrared spectroscopy stud. Biomed Opt Express 2020; 11: 1725-1741.
doi: 10.1364/BOE.382197 |
[88] |
Scholkmann F, Kleiser S, Metz AJ, Zimmermann R, Mata Pavia J, Wolf U, et al. A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodolog. NeuroImage 2014; 85: 6-27.
doi: 10.1016/j.neuroimage.2013.05.004 |
[89] |
Niu H, He Y. Resting-state functional brain connectivity: lessons from functional near-infrared spectroscop. Neuroscientist 2014; 20: 173-188.
doi: 10.1177/1073858413502707 |
[90] |
Yang D, Huang R, Yoo S-H, Shin M-J, Yoon JA, Shin Y-I, et al. Detection of mild cognitive impairment using convolutional neural network: temporal-feature maps of functional near-infrared spectroscop. Front Aging Neurosci 2020; 12: 141.
doi: 10.3389/fnagi.2020.00141 |
[91] |
Herold F, Wiegel P, Scholkmann F, Muller NG. Applications of functional near-infrared spectroscopy (fNIRS) neuroimaging in exercise(-)cognition science: a systematic, methodology-focused revie. J Clin Med 2018; 7: 466.
doi: 10.3390/jcm7120466 |
[92] |
Obrig H. NIRS in clinical neurology - a 'promising' too. NeuroImage 2014; 85: 535-546.
doi: 10.1016/j.neuroimage.2013.03.045 |
[93] |
Chaudhary U, Birbaumer N, Ramos-Murguialday A. Brain-computer interfaces for communication and rehabilitatio. Nature reviews Neurology 2016; 12: 513-525.
doi: 10.1038/nrneurol.2016.113 pmid: 27539560 |
[94] |
Wang LV, Gao L. Photoacoustic microscopy and computed tomography: from bench to bedsid. Annu Rev Biomed Eng 2014; 16: 155-185.
doi: 10.1146/annurev-bioeng-071813-104553 |
[95] |
Wang LV, Hu S. Photoacoustic tomography: in vivo imaging from organelles to organ. Science 2012; 335: 1458-1462.
doi: 10.1126/science.1216210 pmid: 22442475 |
[96] |
Maugh TH. Photoacoustic spectroscopy: new uses for an old techniqu. Science 1975; 188: 38-39.
pmid: 17760158 |
[97] |
Nie L, Cai X, Maslov K, Garcia-Uribe A, Anastasio MA, Wang LV. Photoacoustic tomography through a whole adult human skull with a photon recycle. Journal of biomedical optics 2012; 17: 110506.
doi: 10.1117/1.JBO.17.11.110506 |
[98] |
Huang C, Nie L, Schoonover RW, Guo Z, Schirra CO, Anastasio MA, et al. Aberration correction for transcranial photoacoustic tomography of primates employing adjunct image dat. Journal of biomedical optics 2012; 17: 066016.
doi: 10.1117/1.JBO.17.6.066016 |
[99] |
Guan S, Khan AA, Sikdar S, Chitnis PV. Limited-view and sparse photoacoustic tomography for neuroimaging with deep learnin. Sci Rep 2020; 10: 8510.
doi: 10.1038/s41598-020-65235-2 |
[100] |
Olefir I, Ghazaryan A, Yang H, Malekzadeh-Najafabadi J, Glasl S, Symvoulidis P, et al. Spatial and spectral mapping and decomposition of neural dynamics and organization of the mouse brain with multispectral optoacoustic tomograph. Cell Rep 2019; 26: 2833-2846.e3.
doi: S2211-1247(19)30182-2 pmid: 30840901 |
[101] |
Nasiriavanaki M, Xia J, Wan H, Bauer AQ, Culver JP, Wang LV. High-resolution photoacoustic tomography of resting-state functional connectivity in the mouse brai. Proc Natl Acad Sci USA 2014; 111: 21-26.
doi: 10.1073/pnas.1311868111 |
[102] |
Wang X, Pang Y, Ku G, Xie X, Stoica G, Wang LV. Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brai. Nat Biotechnol 2003; 21: 803-806.
pmid: 12808463 |
[103] |
Tang J, Dai X, Jiang H. Wearable scanning photoacoustic brain imaging in behaving rat. Journal of biophotonics 2016; 9: 570-575.
doi: 10.1002/jbio.201500311 |
[104] |
Dai X, Xi L, Duan C, Yang H, Xie H, Jiang H. Miniature probe integrating optical-resolution photoacoustic microscopy, optical coherence tomography, and ultrasound imaging: proof-of-concep. Opt Lett 2015; 40: 2921-2924.
doi: 10.1364/OL.40.002921 |
[105] |
Kelly P, Hudry E, Hou SS, Bacskai BJ. In Vivo Two photon imaging of astrocytic structure and function in Alzheimer's diseas. Front Aging Neurosci 2018; 10: 219.
doi: 10.3389/fnagi.2018.00219 |
[106] |
Ouzounov DG, Wang T, Wang M, Feng DD, Horton NG, Cruz-Hernandez JC, et al. In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brai. Nat Methods 2017; 14: 388-390.
doi: 10.1038/nmeth.4183 pmid: 28218900 |
[107] |
Shi L, Sordillo LA, Rodríguez-Contreras A, Alfano R. Transmission in near-infrared optical windows for deep brain imagin. Journal of biophotonics 2016; 9: 38-43.
doi: 10.1002/jbio.201500192 |
[108] |
Horton NG, Wang K, Kobat D, Clark CG, Wise FW, Schaffer CB, et al. In vivo three-photon microscopy of subcortical structures within an intact mouse brai. Nat Photonics 2013; 7: 205-209.
doi: 10.1038/nphoton.2012.336 |
[109] |
Kazmi SMS, Richards LM, Schrandt CJ, Davis MA, Dunn AK. Expanding applications, accuracy, and interpretation of laser speckle contrast imaging of cerebral blood flo. J Cereb Blood Flow Metab 2015; 35: 1076-1084..
doi: 10.1038/jcbfm.2015.84 |
[110] | Luan L, Sullender CT, Li X, Zhao Z, Zhu H, Wei X, et al. Nanoelectronics enabled chronic multimodal neural platform in a mouse ischemic mode. Journal of neuroscience methods 2018; 29: 68-76. |
[111] |
Miao P, Lu H, Liu Q, Li Y, Tong S. Laser speckle contrast imaging of cerebral blood flow in freely moving animal. Journal of biomedical optics 2011; 16: 090502.
doi: 10.1117/1.3625231 |
[112] |
Yoon JH, Jeong Y. In vivo imaging for neurovascular disease researc. Arch Pharm Res 2019; 42: 263-273.
doi: 10.1007/s12272-019-01128-x |
[113] |
Levy H, Ringuette D, Levi O. Rapid monitoring of cerebral ischemia dynamics using laser-based optical imaging of blood oxygenation and flo. Biomed Opt Express 2012; 3: 777-791.
doi: 10.1364/BOE.3.000777 |
[114] | Ma Y, Shaik MA, Kim SH, Kozberg MG, Thibodeaux DN, Zhao HT, et al. Wide-field optical mapping of neural activity and brain haemodynamics: considerations and novel approache. Philos Trans R Soc Lond B Biol Sci 2016; 371: 20150360. |
[115] |
Macé E, Montaldo G, Cohen I, Baulac M, Fink M, Tanter M. Functional ultrasound imaging of the brai. Nature methods 2011; 8: 662-664.
doi: 10.1038/nmeth.1641 pmid: 21725300 |
[116] |
Deffieux T, Demene C, Pernot M, Tanter M. Functional ultrasound neuroimaging: a review of the preclinical and clinical state of the art. Curr Opin Neurobiol 2018; 50: 128-135.
doi: S0959-4388(17)30246-5 pmid: 29477979 |
[117] | Brunner C, Isabel C, Martin A, Dussaux C, Savoye A, Emmrich J, et al. Mapping the dynamics of brain perfusion using functional ultrasound in a rat model of transient middle cerebral artery occlusio. J Cereb Blood Flow Metab 2017; 37: 263-276. |
[118] |
Errico C, Osmanski BF, Pezet S, Couture O, Lenkei Z, Tanter M. Transcranial functional ultrasound imaging of the brain using microbubble-enhanced ultrasensitive Dopple. NeuroImage 2016; 124: 752-761.
doi: 10.1016/j.neuroimage.2015.09.037 |
[119] |
Van Raaij ME, Lindvere L, Dorr A, He J, Sahota B, Foster FS, et al. Functional micro-ultrasound imaging of rodent cerebral hemodynamic. NeuroImage 2011; 58: 100-108.
doi: 10.1016/j.neuroimage.2011.05.088 |
[120] |
Solomon O, Cohen R, Zhang Y, Yang Y, He Q, Luo J, et al. Deep unfolded robust PCA With application to clutter suppression in ultrasoun. IEEE transactions on medical imaging 2020; 39: 1051-1063.
doi: 10.1109/TMI.2019.2941271 pmid: 31535987 |
[121] |
Demené C, Deffieux T, Pernot M, Osmanski B-F, Biran V, Gennisson J-L, et al. Spatiotemporal clutter filtering of ultrafast ultrasound data highly increases doppler and fultrasound sensitivit. IEEE transactions on medical imaging 2015; 34: 2271-2285.
doi: 10.1109/TMI.2015.2428634 |
[122] |
Errico C, Pierre J, Pezet S, Desailly Y, Lenkei Z, Couture O, et al. Ultrafast ultrasound localization microscopy for deep super-resolution vascular imagin. Nature 2015; 527: 499-502.
doi: 10.1038/nature16066 |
[123] |
Tanter M, Fink M. Ultrafast imaging in biomedical ultrasoun. IEEE Trans Ultrason Ferroelectr Freq Control 2014; 61: 102-119.
doi: 10.1109/TUFFC.2014.2882 |
[124] | Rabut C, Correia M, Finel V, Pezet S, Pernot M, Deffieux T, et al. 4D functional ultrasound imaging of whole-brain activity in rodent. Nat Methods 2019; 16: 994-997. |
[125] |
Sieu L-A, Bergel A, Tiran E, Deffieux T, Pernot M, Gennisson J-L, et al. EEG and functional ultrasound imaging in mobile rat. Nature methods 2015; 12: 831-834.
doi: 10.1038/nmeth.3506 |
[126] |
Urban A, Dussaux C, Martel G, Brunner C, Mace E, Montaldo G. Real-time imaging of brain activity in freely moving rats using functional ultrasoun. Nature methods 2015; 12: 873-878.
doi: 10.1038/nmeth.3482 pmid: 26192084 |
[127] |
Jackman K, Iadecola C. Neurovascular regulation in the ischemic brai. Antioxid Redox Signal 2015; 22: 149-160.
doi: 10.1089/ars.2013.5669 |
[128] |
Barber PA. Magnetic resonance imaging of ischemia viability thresholds and the neurovascular uni. Sensors (Basel) 2013; 13: 6981-7003.
doi: 10.3390/s130606981 |
[129] |
Schellinger PD, Köhrmann M. MRA/DWI mismatch: a novel concept or something one could get easier and cheape?. Stroke 2008; 39: 2423-2424.
doi: 10.1161/STROKEAHA.108.516963 pmid: 18635838 |
[130] |
Hong W, Lin Q, Cui Z, Liu F, Xu R, Tang C. Diverse functional connectivity patterns of resting-state brain networks associated with good and poor hand outcomes following strok. NeuroImage Clinical 2019; 24: 102065.
doi: 10.1016/j.nicl.2019.102065 |
[131] |
Magistretti PJ, Allaman I. A cellular perspective on brain energy metabolism and functional imagin. Neuron 2015; 86: 883-901.
doi: S0896-6273(15)00259-7 pmid: 25996133 |
[132] |
Poupot R, Bergozza D, Fruchon S. Nanoparticle-based strategies to treat neuro-inflammatio. Materials (Basel) 2018; 11: 270.
doi: 10.3390/ma11020270 |
[133] |
Begley DJ. Delivery of therapeutic agents to the central nervous system: the problems and the possibilitie. Pharmacol Ther 2004; 104: 29-45.
doi: 10.1016/j.pharmthera.2004.08.001 |
[134] | Kaspar M, Partovi S, Aschwanden M, Imfeld S, Baldi T, Uthoff H, et al. Assessment of microcirculation by contrast-enhanced ultrasound: a new approach in vascular medicin. Swiss Med Wkly 2015; 145: w14047. |
[135] |
Mulvagh SL, Rakowski H, Vannan MA, Abdelmoneim SS, Becher H, Bierig SM, et al. American society of echocardiography consensus statement on the clinical applications of ultrasonic contrast agents in echocardiograph. J Am Soc Echocardiogr 2008; 21: 1179-1201.
doi: 10.1016/j.echo.2008.09.009 |
[136] |
Huang H-Y, Liu H-L, Hsu P-H, Chiang C-S, Tsai C-H, Chi H-S, et al. A multitheragnostic nanobubble system to induce blood-brain barrier disruption with magnetically guided focused ultrasoun. Adv Mater Weinheim 2015; 27: 655-661.
doi: 10.1002/adma.201403889 |
[137] |
Zhao R, Jiang J, Li H, Chen M, Liu R, Sun S, et al. Phosphatidylserine-microbubble targeting-activated microglia/macrophage in inflammation combined with ultrasound for breaking through the blood-brain barrie. Journal of neuroinflammation 2018; 15: 334.
doi: 10.1186/s12974-018-1368-1 |
[138] |
Xiong X-Y, Liu L, Yang Q-W. Functions and mechanisms of microglia/macrophages in neuroinflammation and neurogenesis after strok. Progress in neurobiology 2016; 142: 23-44.
doi: 10.1016/j.pneurobio.2016.05.001 |
[139] |
Urban A, Golgher L, Brunner C, Gdalyahu A, Har-Gil H, Kain D, et al. Understanding the neurovascular unit at multiple scales: advantages and limitations of multi-photon and functional ultrasound imagin. Adv Drug Deliv Rev 2017; 119: 73-100.
doi: 10.1016/j.addr.2017.07.018 |
[140] |
Aryal M, Arvanitis CD, Alexander PM, Mcdannold N. Ultrasound-mediated blood-brain barrier disruption for targeted drug delivery in the central nervous syste. Adv Drug Deliv Rev 2014; 72: 94-109.
doi: 10.1016/j.addr.2014.01.008 |
[141] |
Lentacker I, De Cock I, Deckers R, De Smedt SC, Moonen CTW. Understanding ultrasound induced sonoporation: definitions and underlying mechanism. Advanced drug delivery reviews 2014; 72: 49-64.
doi: 10.1016/j.addr.2013.11.008 pmid: 24270006 |
[142] |
Pulicherla KK, Verma MK. Targeting therapeutics across the blood brain barrier (BBB), prerequisite towards thrombolytic therapy for cerebrovascular disorders-an overview and advancement. AAPS PharmSciTech 2015; 16: 223-233.
doi: 10.1208/s12249-015-0287-z pmid: 25613561 |
[143] |
Zatorre RJ, Fields RD, Johansen-Berg H. Plasticity in gray and white: neuroimaging changes in brain structure during learnin. Nature neuroscience 2012; 15: 528-536.
doi: 10.1038/nn.3045 pmid: 22426254 |
[1] | Won-Chul Bang, PhD, Vice President, Yeong Kyeong Seong, PhD, Jinyong Lee. The Impact of Deep Learning on Ultrasound in Diagnosis and Therapy: Enhancing Clinical Decision Support, Workflow Efficiency, Quantification, Image Registration, and Real-time Assistance [J]. Advanced Ultrasound in Diagnosis and Therapy, 2023, 7(2): 204-216. |
[2] | Jingfang Dong, MD, Jianyun Wang, MD, Xiangzhu Wang, MD. Predicting Malignancy in Sonographic Features of Thyroid Nodules Using Convolutional Neural Networks ResNet50 Model [J]. Advanced Ultrasound in Diagnosis and Therapy, 2023, 7(1): 16-22. |
[3] | The Professional Committee of Vascular Ultrasound of Stroke Prevention and Treatment Expert, Committee of the National Health Commission , The Professional Committee of Superficial Organ and Peripheral Vascular Ultrasound of the Chinese Medical Ultrasound Engineering , The Professional Committee of Craniocerebral and Cervical Vascular Ultrasound of the Chinese Medical Ultrasound Engineering . Expert Consensus on Some Issues of Cerebral and Carotid Vascular Ultrasonography [J]. Advanced Ultrasound in Diagnosis and Therapy, 2021, 5(2): 153-162. |
[4] | Yumei Liu, MD, Beibei Liu, MD, MS, Boyu Li, MD, PhD, Yang Hua, MD. Coronary Heart Disease Concomitant with Atherosclerotic Cerebrovascular Disease [J]. Advanced Ultrasound in Diagnosis and Therapy, 2019, 3(3): 76-80. |
[5] | Jinlian Ma, PhD, Dexing Kong, PhD. Deep Learning Models for Segmentation of Lesion Based on Ultrasound Images [J]. Advanced Ultrasound in Diagnosis and Therapy, 2018, 2(2): 82-93. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Share: WeChat
Copyright ©2018 Advanced Ultrasound in Diagnosis and Therapy
|
Advanced Ultrasound in Diagnosis and Therapy (AUDT) a> is licensed under a Creative Commons Attribution 4.0 International License a>.