ADVANCED ULTRASOUND IN DIAGNOSIS AND THERAPY >
Ultrasonic Thermal Strain Imaging for Noninvasive Temperature Estimation in Tissue
Received date: 2018-07-18
Online published: 2018-08-19
By virtue of advantages including no exposure to radiation and low toxicity and side effects, hyperthermia has been increasingly applied in treating cancer and other diseases. However, the challenge of continuous temperature monitoring during hyperthermia limits its further application. Currently, temperature monitoring in the clinic is primarily carried out using invasive thermometry, which is hampered by incomplete detection and pain. To overcome the obvious limitations of invasive thermometry, a variety of noninvasive thermometry methods with suitable accuracy have been explored. Among these, ultrasonic thermal strain imaging (UTSI), which exploits the temperature dependence of ultrasonic echo time shift to form thermal strain images, shows significant potential. It not only possesses the merits of ultrasonography but also displays different tissue characteristics (thermal properties of tissue and sound velocity) from other ultrasound imaging methods, so it has been investigated extensively over the past few years. This paper reviews recent advances in UTSI for noninvasive thermometry and discusses its main limitations, hoping to show the strong clinical application potential of UTSI from solid basic theory and practical research results.
Zeng Wenlong , J Krueger Christopher , Dai, PhD Zhifei . Ultrasonic Thermal Strain Imaging for Noninvasive Temperature Estimation in Tissue[J]. ADVANCED ULTRASOUND IN DIAGNOSIS AND THERAPY, 2018 , 2(2) : 71 -81 . DOI: 10.37015/AUDT.2018.180803
[1] | Van Den Tempel N, Horsman M R, Kanaar R. Improving efficacy of hyperthermia in oncology by exploiting biological mechanisms. Int J Hyperther 2016; 32:446-54. |
[2] | Mallory M, Gogineni E, Jones GC, Greer L, Simone II CB. Therapeutic hyperthermia: The old, the new, and the upcoming. Crit Rev Oncol Hemat 2016; 97:56-64. |
[3] | Zhou YF. Noninvasive thermometry in high-intensity focused ultrasound ablation. Ultrasound Q 2017; 33:253-60. |
[4] | Lewis MA, Staruch RM, Chopra R. Thermometry and ablation monitoring with ultrasound. Int J Hyperther 2015; 31:163-81. |
[5] | Fani F, Schena E, Saccomandi P, Silvestri S. CT-based thermometry: An overview. Int J Hyperther 201430:219-27. |
[6] | Rashetnia R, Hallaji M, Smyl D, Sepp?nen A, Pour-Ghaz M. Detection and localization of changes in two-dimensional temperature distributions by electrical resistance tomography. Smart Mater Struct 2017; 26:115021. |
[7] | Losev AG, Khoperskov AV, Astakhov AS, Suleymanova HM. Problems of measurement and modeling of thermal and radiation fields in biological tissues: analysis of microwave thermometry data. Science Journal of Volsu. mathematics. physics 2015; 6:31-71. |
[8] | Hey S, De Smet M, Stehning C, Grüll H, Keupp J, Moonen CTW, et al. Simultaneous T1 measurements and proton resonance frequency shift based thermometry using variable flip angles. Magn Reson Med 2012; 67:457-63. |
[9] | Borman PTS, Bos C, De Boorder T, Raaymakers BW, Moonen CTW, Crijns SPM. Towards real-time thermometry using simultaneous multislice MRI. Phys Med Biol 2016; 61:N461-77. |
[10] | Okada A, Morita Y, Fukunishi H, Takeichi K, Murakami T. Non-invasive magnetic resonance-guided focused ultrasound treatment of uterine fibroids in a large Japanese population: impact of the learning curve on patient outcome. Ultrasound Obst Gyn 2009; 34:579-83. |
[11] | Zhou ZH, Wu WW, Wu SC, Yang CL, Lin CC, Tsui PH. Recent advances in noninvasive ultrasound monitoring of thermal therapy for tumors. Sci Technol Rev 2014; 32:19-24. |
[12] | Slayton MH, Barthe PG. Imaging, therapy, and temperature monitoring ultrasonic method: US9272162[P]. 2016. |
[13] | Van Dongen KWA, Verweij MD. A feasibility study for non-invasive thermometry using non-linear ultrasound. Int J Hyperther 2011; 27:612-24. |
[14] | Chenot J, Melodelima D. Temperature measurement using backscattered ultrasonic power for non-invasive thermometry during HIFU ablatio ablation. J Acoust Soc Am 2015; 137:2399-9. |
[15] | Sheng L, Zhou Z H, Wu S C, Zeng Y. Study frequency shift evaluation of ultrasound in heating fields of hyperthermia by AR model. Apcbee Proc 2013; 7:138-44. |
[16] | Foiret J, Ferrara K. Advances in thermal strain imaging: 3D motion and tumor validation studies. Proceedings of IEEE IUS[C]. New York: IEEE, 2015: 1-4. |
[17] | Yao JJ, Ke HX, Tai S, Zhou Y, Wang LV. Absolute photoacoustic thermometry in deep tissue. Opt Lett 2013; 38:5228-31. |
[18] | Seip R, Vanbaren P, Cain CA, Ebbini ES. Noninvasive real-time multipoint temperature control for ultrasound phased array treatments. IEEE T Ultrason Ferr 1996; 43:1063-73. |
[19] | Foiret J, Ferrara KW. Spatial and temporal control of hyperthermia using real time ultrasonic thermal strain imaging with motion compensation, phantom study. Plos One 2015; 10:e0134938. |
[20] | Seo J, Kim S K, Kim Y S, Choi K, Kong DG, Bang WC. Motion compensation for ultrasound thermal imaging using motion-mapped reference model: Anin vivo mouse study. IEEE T Bio-Med Eng 2014; 61:2669-78. |
[21] | Foiret J, Ferrara KW. Spatial and Temporal Control of Hyperthermia Using Real Time Ultrasonic Thermal Strain Imaging with Motion Compensation, Phantom Study. PLoS One 2015; 10(8):e0134938. |
[22] | Simon C, VanBaren PD, Ebbini ES. Motion compensation algorithm for noninvasive two-dimensional temperature estimation using diagnostic pulse-echo ultrasound[A]. Proceedings of SPIE[C]. Bellingham: SPIE-Int Soc Optical Engineering, 1998: 182-93. |
[23] | Fleming I, Hager G, Guo XY, Kang HJ, Boctor E. Iterative motion compensation approach for ultrasonic thermal imaging[A]. Proceedings of SPIE[C]. Bellingham: SPIE-Int Soc Optical Engineering, 2015: 94190Z. |
[24] | Alessandrini M, Basarab A, Liebgott H, Bernard O. Myocardial motion estimation from medical images using the monogenic signal. IEEE T Image Process 2013; 22:1084-95. |
[25] | O'Donnell M Skovoroda AR, Shapo BM, Emelianov S Y., Internal displacement and strain imaging using ultrasonic speckle tracking. IEEE T Ultrason Ferr 1994; 41:314-25. |
[26] | Ding X, Dutta D, Mahmoud A M, Tillman B, Leers SA, Kim K. An Adaptive displacement estimation algorithm for improved reconstruction of thermal strain. IEEE T Ultrason Ferr 2015; 62:138-51. |
[27] | Arthur R M, Basu D, Guo YZ, Trobaugh JW, Moros EG. 3D in vitro estimation of temperature using the change in backscattered ultrasonic energy. IEEE T Ultrason Ferr 2010; 57:1724-33. |
[28] | Tsui PH, Shu YC, Chen WS, Liu HL, Hsiao IT, Chien YT. Ultrasound temperature estimation based on probability variation of backscatter data. Med Phys 2012; 39:2369-85. |
[29] | Maassmoreno R, Damianou CA, Sanghvi NT. Noninvasive temperature estimation in tissue via ultrasound echo-shifts . Part II.In vitro study. J Acoust Soc Am 1996; 100:2522-30. |
[30] | Morris H, Rivens I, Shaw A, ter Haarw G. Investigation of the viscous heating artefact arising from the use of thermocouples in a focused ultrasound field. Phys Med Biol 2008; 53:4759-76. |
[31] | Rivens I, Shaw A, Civale J, Morris H. Treatment monitoring and thermometry for therapeutic focused ultrasound. Int J Hyperther 2007; 23:121-39. |
[32] | Liu HL, Li ML, Shih TC, Huang SM, Lu IY, Lin DY, et al. Instantaneous frequency-based ultrasonic temperature estimation during focused ultrasound thermal therapy. Ultrasound Med Biol 2009; 35:1647-61. |
[33] | Huang SW, Kim K, Witte RS, Olafsson R, O' Donnell M. Inducing and imaging thermal strain using a single ultrasound linear array. IEEE T Ultrason Ferr 2007; 54:1718-20. |
[34] | Yoshizumi T, Nakamura T, Yamane M, Waliul Islam AHM, Menju M, Yamasaki K, et al. Abdominal fat: Standardized technique for measurement at CT. Radiology 1999; 211:283-6. |
[35] | Lai CY, Kruse DE, Ferrara KW, Caskey CF. Creation and characterization of an ultrasound and CT phantom for noninvasive ultrasound thermometry calibration. IEEE T Bio-Med Eng 2014; 61:502-12. |
[36] | Song C, Tang B, Campbell P A, Cuschieri A. Thermal spread and heat absorbance differences between open and laparoscopic surgeries during energized dissections by electrosurgical instruments. Surg Endosc 2009; 23:2480-2487. |
[37] | Bobkova S, Gavrilov L, Khokhlova V, Shaw A, Hand J. Focusing of high-Intensity ultrasound through the rib cage using a therapeutic random phased array. Ultrasound Med Biol 2010; 36:888-906. |
[38] | Qiu Z, Gao J, Cochran S, Huang Z H, Corner G, Song CL. The development of therapeutic ultrasound with assistance of robotic manipulator[A]. IEEE Engineering in Medicine and Biology Society Conference Proceedings[C]. New York: IEEE, 2009: 733-736. |
[39] | Hsiao Y S, Deng C X. Calibration and evaluation of ultrasound thermography using infrared imaging. Ultrasound Med Biol 2016; 42:503-17. |
[40] | Anand A, Kaczkowski P J. Noninvasive measurement of local thermal diffusivity using backscattered ultrasound and focused ultrasound heating. Ultrasound Med Biol 2008; 34:1449-64. |
[41] | Fuhrmann T A, Georg O, Haller J, Jenderka KV, Wilkens V. Uncertainty estimation for temperature measurement with diagnostic ultrasound. J Ther Ultrasound 2016; 4:1-17. |
[42] | Liu YD, Li Q, Zhou ZH, Yeah YW, Chang CC, Lee CY, et al. Adaptive ultrasound temperature imaging for monitoring radiofrequency ablation. Plos One 2017; 12:e0182457. |
[43] | Lee SA, Jong Seob J. Feasibility study of pulse compression technique to improve accuracy of ultrasonic temperature estimation. Biomed Eng Lett 2016; 6:256-64. |
[44] | Song J, Chang JH, Song TK, Yoo Y. Coded tissue harmonic imaging with nonlinear chirp signals. Ultrasonics 2011; 51:516-21. |
[45] | Ding X, Nguyen MM, James IB, Marra KG, Rubin JP, Leers SA, et al. Improved estimation of ultrasound thermal strain using pulse inversion harmonic imaging. Ultrasound Med Biol 2016; 42:1182-92. |
[46] | Lediju MA, Pihl MJ, Dahl JJ, Trahey GE. Quantitative assessment of the magnitude, impact and spatial extent of ultrasonic clutter. Ultrasonic Imaging 2008; 30:151-68. |
[47] | Dahl JJ, Sheth NM. Reverberation clutter from subcutaneous tissue layers: Simulation and in vivo demonstrations. Ultrasound Med Biol 2014; 40:714-26. |
[48] | Doherty JR, Dahl JJ, Trahey GE. Harmonic tracking of acoustic radiation force-induced displacements. IEEE T Ultrason Ferr 2013; 60:2347-58. |
[49] | Anand A, Savery D, Hall C. Ultrasonic spatial and temporal determination of heat deposition in three dimensions[A]. Proceedings of IEEE IUS[C]. New York: IEEE, 2006: 1758-61. |
[50] | Boctor EM, Deshmukh N, Ayad MS, Clarke C, Dickie K, Choti MA, et al. Three-dimensional heat-induced echo-strain imaging for monitoring high-intensity acoustic ablation[A]. Proceedings of SPIE[C]. Bellingham: SPIE-Int Soc Optical Engineering, 2009: 72650R. |
[51] | Bamber JC, Hill CR. Ultrasonic attenuation and propagation speed in mammalian tissues as a function of temperature. Ultrasound Med Biol 1979; 5:149-57. |
[52] | Seo CH, Stephens DN, Cannata J, Dentinger A, Lin F, Park S, et al. The feasibility of using thermal strain imaging to regulate energy delivery during intracardiac radio-frequency ablation. IEEE T Ultrason Ferr 2011; 58:1406-17. |
[53] | Seo CH, Stephens D, Cannata J, Dentinger A, Feng L, Wildes D, et al. Monitoring radiofrequency catheter ablation using thermal strain imaging[A]. Proceedings of IEEE IUS[C]. New York: IEEE, 2010: 1364-7. |
[54] | Stephens DN, Truong UT, Nikoozadeh A, Oralkan ?, Seo CH, Cannata J, et al. First in vivo use of a capacitive micromachined ultrasound transducer array-based imaging and ablation catheter. J Ultrasound Med 2012; 31:247-56. |
[55] | Kheirolomoom A, Lai CY, Tam SM, Mahakian LM, Ingham ES, Watson KD, et al. Complete regression of local cancer using temperature-sensitive liposomes combined with ultrasound-mediated hyperthermia. J Control Release 2013; 172:266-73. |
[56] | Simon C, Vanbaren P, Ebbini ES. Two-dimensional temperature estimation using diagnostic ultrasound. IEEE T Ultrason Ferr 1998; 45:1088-99. |
[57] | Bayat M, Ballard JR, Ebbini ES. In Vivo Ultrasound thermography in presence of temperature heterogeneity and natural motions. IEEE T Bio-Med Eng 2015; 62:450-7. |
[58] | Bayat M, Ballard JR, Ebbini ES. Ultrasound thermography in vivo: A new model for calculation of temperature change in the presence of temperature heterogeneity[A]. Proceedings of IEEE IUS[C]. New York: IEEE, 2013: 116-19. |
[59] | Bayat M, Ballard JR, Ebbini ES. Ultrasound thermography: a new temperature reconstruction model and in vivo results. Aip Conf Proc 2017; 1821:060004. |
[60] | Seo CH, Shi Y, Huang SW, Kim K, O' Donnell M. T Thermal strain imaging: a review. Interface Focus 2011; 1:649-64. |
[61] | Gregory TS, Oshinski J, Schmidt EJ, Zion TT. ECG electrode placements for magnetohydrodynamic voltage suppression and improving cardiac gating in high-field MRI. J Cardiov Magn Reson 2016; 18:328. |
[62] | Koivum?ki T, Nekolla SG, Fürst S, Loher S, Vauhkonen M, Schwaiger M, et al. An integrated bioimpedance-ECG gating technique for respiratory and cardiac motion compensation in cardiac PET. Phys Med Biol 2014; 59:6373-85. |
[63] | Kim K, Huang S W, Olafsson R, Jia C, Witte R S, O' Donnell M. Motion artifact reduction by ECG gating in ultrasound induced thermal strain imaging[A]. Proceedings of IEEE IUS[C]. New York: IEEE, 2007: 581-4. |
[64] | Dutta D, Mahmoud AM, Leers SA, Kim K. Motion artifact reduction in ultrasound based thermal strain imaging of atherosclerotic plaques using time-series analysis. IEEE T Ultrason Ferr 2013; 60:1660-8. |
[65] | Holt CC. Forecasting seasonals and trends by exponentially weighted moving averages. Int J Forecasting 2004; 20:5-10. |
/
〈 | 〉 |