[1] | James ML, Gambhir SS. A molecular imaging primer: Modalities, imaging agents, and applications. Physio Rev 2012; 92:897-965. | [2] | Zlitni A, Gambhir SS. Molecular imaging agents for ultrasound. Curr Opin Chem Biol 2018; 45:113-120. | [3] | Güvener N, Appold L, de Lorenzi F, Golombek SK, Rizzo LY, Lammers T, et al. Recent Advances in Ultrasound-Based Diagnosis and Therapy with Micro- and Nanometer-Sized Formulations. Methods 2017; 130:4-13. | [4] | Lea-Banks H, O'Reilly MA, Hynynen K. Ultrasound-responsive droplets for therapy: A review. J Control Release 2019; 293:144-154. | [5] | Kee ALY, Teo BM. Biomedical applications of acoustically responsive phase shift nanodroplets: current status and future directions. Ultrason Sonochem 2019; 56:37-45. | [6] | Tang H, Zheng Y, Chen Y. Materials chemistry of nanoultrasonic biomedicine. Adv Mater 2017; 29:1604105. | [7] | Baghbani F, Chegeni M, Moztarzadeh F, Hadian-Ghazvini S, Raz M. Novel ultrasound-responsive chitosan/perfluorohexane nanodroplets for image-guided smart delivery of an anticancer agent: Curcumin. Mater Sci Eng C Mater Biol Appl 2017; 74:186-193. | [8] | Khadjavi A, Stura I, Prato M, Minero VG, Panariti A, Rivolta I, et al. ‘In vitro’, ‘in vivo’ and ‘in silico’ investigation of the anticancer effectiveness of oxygen-loaded chitosan-shelled nanodroplets as potential drug vector. Pharm Res 2018; 35:75. | [9] | Baghbani F, Chegeni M, Moztarzadeh F, Mohandesi JA, Mokhtari-Dizaji M. Ultrasonic nanotherapy of breast cancer using novel ultrasound-responsive alginate-shelled perfluorohexane nanodroplets: In vitro and in vivo evaluation. Mater Sci Eng C Mater Biol Appl 2017; 77:698-707. | [10] | Gao Z, Kennedy AM, Christensen DA, Rapoport NY. Drug-loaded nano/microbubbles for combining ultrasonography and targeted chemotherapy. Ultrasonics 2008; 48:260-270. | [11] | Rapoport N, Christensen DA, Kennedy AM, Nam K-H. Cavitation properties of block copolymer stabilized phase-shift nanoemulsions used as drug carriers. Ultrasound Med Biol 2010; 36:419-429. | [12] | Cao Y, Chen Y, Yu T, Guo Y, Liu F, Yao Y, et al. Drug release from phase-changeable nanodroplets triggered by low-intensity focused ultrasound. Theranostics 2018; 8:1327-39. | [13] | Mannaris C, Yang C, Carugo D, Owen J, Lee JY, Nwokeoha S, et al. Acoustically responsive polydopamine nanodroplets: a novel theranostic agent. Ultrason Sonochem 2020; 60:104782. | [14] | Kripfgans OD, Fabiilli ML, Carson PL, Fowlkes JB. On the acoustic vaporization of micrometer-sized droplets. J Acoust Soc Am 2004; 116:272-281. | [15] | Schad KC, Hynynen K. In Vitrocharacterization of perfluorocarbon droplets for focused ultrasound therapy. Phys Med Biol 2010; 55:4933-4947. | [16] | Kripfgans OD, Fowlkes JB, Miller DL, Eldevik OP, Carson PL. Acoustic droplet vaporization for therapeutic and diagnostic applications. Ultrasound Med Biol 2000; 26:1177-1189. | [17] | Haworth KJ, Fowlkes JB, Carson PL, Kripfgans OD. Towards aberration correction of transcranial ultrasound using acoustic droplet vaporization. Ultrasound Med Biol 2008; 34:435-445. | [18] | Gao J, Yu B, Li C, Xu M, Cao Z, Xie X, et al. Ultrasound triggered phase-change nanodroplets for doxorubicin prodrug delivery and ultrasound diagnosis: An in vitro study. Colloids Surf B Biointerfaces 2019; 174:416-425. | [19] | Dong W, Wu P, Zhou D, Huang J, Qin M, Yang X, et al. Ultrasound-mediated gene therapy of hepatocellular carcinoma using pre-microrna plasmid-loaded nanodroplets. Ultrasound Med Biol 2020; 46:90-107. | [20] | Rapoport NY, Efros AL, Christensen DA, Kennedy AM, Nam KH. Microbubble generation in phase-shift nanoemulsions used as anticancer drug carriers. Bubble Sci Eng Technol 2009; 1:31-39. | [21] | Rapoport N, Nam K-H, Gupta R, Gao Z, Mohan P, Payne A, et al. Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions. J Control Release 2011; 153:4-15. | [22] | Yang Q, Li P, Ran H, Wan J, Chen H, Chen H, et al. Polypyrrole-coated phase-change liquid perfluorocarbon nanoparticles for the visualized photothermal-chemotherapy of breast cancer. Acta Biomater 2019; 90:337-349. | [23] | Phillips LC, Puett C, Sheeran PS, Dayton PA, Wilson Miller G, Matsunaga TO. Phase-shift perfluorocarbon agents enhance high intensity focused ultrasound thermal delivery with reduced near-field heating. J Acoust Soc Am 2013; 134:1473-82. | [24] | Sheeran PS, Wong VP, Luois S, McFarland RJ, Ross WD, Feingold S, et al. Decafluorobutane as a phase-change contrast agent for low-energy extravascular ultrasonic imaging. Ultrasound Med Biol 2011; 37:1518-1530. | [25] | Matsunaga T, Sheeran P, Luois S, Streeter J, Mullin L, Dayton P. Phase-change nanoparticles using highly volatile perfluorocarbons: toward a platform for extravascular ultrasound imaging. Theranostics 2012; 2:1185-98. | [26] | Li K, Liu Y, Zhang S, Xu Y, Jiang J, Yin F, et al. Folate receptor-targeted ultrasonic pfob nanoparticles: synthesis, characterization and application in tumor-targeted imaging. Int J Mol Med 2017; 39. | [27] | Sheeran PS, Yoo K, Williams R, Yin M, Foster FS, Burns PN. More than bubbles: Creating phase-shift droplets from commercially available ultrasound contrast agents. Ultrasound Med Biol 2017; 43:531-540. | [28] | Nakamura Y, Mochida A, Choyke PL, Kobayashi H. Nanodrug delivery: Is the enhanced permeability and retention effect sufficient for curing cancer? Bioconjug Chem 2016; 27:2225-38. | [29] | Parker N, Turk MJ, Westrick E, Lewis JD, Low PS, Leamon CP. Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay. Anal Biochem 2005; 338:284-293. | [30] | Zhang G, Lin S, Leow CH, Pang KT, Hernández-Gil J, Long NJ, et al. Quantification of vaporised targeted nanodroplets using high-frame-rate ultrasound and optics. Ultrasound Med Biol 2019; 45:1131-1142. | [31] | Hadinger KP, Marshalek JP, Sheeran PS, Dayton PA, Matsunaga TO. Optimization of phase-change contrast agents for targeting MDA-MB-231 breast cancer cells. Ultrasound Med Biol 2018; 44:2728-2738. | [32] | Liu J, Shang T, Wang F, Cao Y, Hao L, Ren J, et al. Low-intensity focused ultrasound (LIFU)-induced acoustic droplet vaporization in phase-transition perfluoropentane nanodroplets modified by folate for ultrasound molecular imaging. Int J Nanomedicine 2017; 12:911-923. | [33] | Gao D, Gao J, Xu M, Cao Z, Zhou L, Li Y, et al. Targeted Ultrasound-triggered phase transition nanodroplets for Her2-overexpressing breast cancer diagnosis and gene transfection. Mo Pharm 2017; 14:984-998. | [34] | Toumia Y, Cerroni B, Domenici F, Lange H, Bianchi L, Cociorb M, et al. Phase change ultrasound contrast agents with a photopolymerized diacetylene shell. Langmuir 2019; 35:10116-10127. | [35] | Lin CY, Pitt WG. Acoustic droplet vaporization in biology and medicine. Biomed Res Int 2013; 2013:404361. | [36] | Pitt WG, Singh RN, Perez KX, Husseini GA, Jack DR. Phase transitions of perfluorocarbon nanoemulsion induced with ultrasound: a mathematical model. Ultrason Sonochem 2014; 21:879-891. | [37] | Sheeran PS, Matsunaga TO, Dayton PA. Phase-transition thresholds and vaporization phenomena for ultrasound phase-change nanoemulsions assessed via high-speed optical microscopy. Phys Med Biol 2013; 58:4513-4534. | [38] | Paul SS, Paul AD. Phase-change contrast agents for imaging and therapy. Curr Pharm Des 2012; 18:2152-2165. | [39] | Kandadai MA, Mohan P, Lin G, Butterfield A, Skliar M, Magda JJ. Comparison of surfactants used to prepare aqueous perfluoropentane emulsions for pharmaceutical applications. Langmuir 2010; 26:4655-4660. | [40] | Kang ST, Yeh CK. Intracellular acoustic droplet vaporization in a single peritoneal macrophage for drug delivery applications. Langmuir 2011; 27:13183-13188. | [41] | Shpak O, Verweij M, Vos HJ, de Jong N, Lohse D, Versluis M. Acoustic droplet vaporization is initiated by superharmonic focusing. Proc Natl Acad Sci USA 2014; 111:1697-1702. | [42] | Reznik N, Lajoinie G, Shpak O, Gelderblom EC, Williams R, de Jong N, et al. On the acoustic properties of vaporized submicron perfluorocarbon droplets. Ultrasound Med Biol 2014; 40:1379-1384. | [43] | Evans DR, Parsons DF, Craig VS. Physical properties of phase-change emulsions. Langmuir 2006; 22:9538-9545. | [44] | Fabiilli ML, Haworth KJ, Fakhri NH, Kripfgans OD, Carson PL, Fowlkes JB. The role of inertial cavitation in acoustic droplet vaporization. IEEE Trans Ultrason Ferroelectr Freq Control 2009; 56:1006-1017. | [45] | Giesecke T, Hynynen K. Ultrasound-mediated cavitation thresholds of liquid perfluorocarbon droplets in vitro. Ultrasound Med Biol 2003; 29:1359-1365. | [46] | Lo AH, Kripfgans OD, Carson PL, Rothman ED, Fowlkes JB. Acoustic droplet vaporization threshold: effects of pulse duration and contrast agent. IEEE Trans Ultrason Ferroelectr Freq Control 2007; 54:933-46. | [47] | Wischhusen J, Padilla F. Ultrasound-targeted microbubble destruction (UTMD) for localized drug delivery into tumor tissue. IRBM 2019; 40:10-15. | [48] | Abou-Elkacem L, Bachawal SV, Willmann JK. Ultrasound molecular imaging: moving toward clinical translation. Eur J Radiol 2015; 84:1685-1693. | [49] | Kiessling F, Fokong S, Bzyl J, Lederle W, Palmowski M, Lammers T. Recent advances in molecular, multimodal and theranostic ultrasound imaging. Adv Drug Deliv Rev 2014; 72:15-27. | [50] | Williams R, Wright C, Cherin E, Reznik N, Lee M, Gorelikov I, et al. Characterization of submicron phase-change perfluorocarbon droplets for extravascular ultrasound imaging of cancer. Ultrasound Med Biol 2013; 39:475-89. | [51] | Choi D, Jeon S, You D, Um W, Kim JY, Yoon H, et al. Iodinated echogenic glycol chitosan nanoparticles for x-ray CT/US dual imaging of tumor. Nanotheranostics 2018; 2:117-27. | [52] | Dimcevski G, Kotopoulis S, Bj?nes T, Hoem D, Schj?tt J, Gjertsen BT, et al. A human clinical trial using ultrasound and microbubbles to enhance gemcitabine treatment of inoperable pancreatic cancer. J Control Release 2016; 243:172-181. | [53] | Luo W, Wen G, Yang L, Tang J, Wang J, Wang J, et al. Dual-targeted and pH-sensitive doxorubicin prodrug-microbubble complex with ultrasound for tumor treatment. Theranostics 2017; 7:452-65. | [54] | Yan F, Li L, Deng Z, Jin Q, Chen J, Yang W, et al. Paclitaxel-liposome-microbubble complexes as ultrasound-triggered therapeutic drug delivery carriers. J Control Release 2013; 166:246-55. | [55] | Tinkov S, Coester C, Serba S, Geis NA, Katus HA, Winter G, et al. New doxorubicin-loaded phospholipid microbubbles for targeted tumor therapy: in-vivo characterization. J Control Release 2010; 148:368-72. | [56] | Ho YJ, Chiang YJ, Kang ST, Fan CH, Yeh CK. Camptothecin-loaded fusogenic nanodroplets as ultrasound theranostic agent in stem cell-mediated drug-delivery system. J Control Release 2018; 278:100-109. | [57] | Zhao YZ, Zhang M, Wong HL, Tian XQ, Zheng L, Yu XC, et al. Prevent diabetic cardiomyopathy in diabetic rats by combined therapy of aFGF-loaded nanoparticles and ultrasound-targeted microbubble destruction technique. J Control Release 2016; 223 : 11-21. | [58] | Paproski RJ, Forbrich A, Hitt M, Zemp R. RNA biomarker release with ultrasound and phase-change nanodroplets. Ultrasound Med Biol 2014; 40:1847-56. | [59] | Gao D, Xu M, Cao Z, Gao J, Chen Y, Li Y, et al. Ultrasound-triggered phase-transition cationic nanodroplets for enhanced gene delivery. ACS Appl Mater Interfaces 2015; 7:13524-13537. | [60] | Guo H, Xu M, Cao Z, Li W, Chen L, Xie X, et al. Ultrasound-assisted miR-122-loaded polymeric nanodroplets for hepatocellular carcinoma gene therapy. Mo Pharm 2020; 17:541-553. | [61] | Zhao Y, Song W, Wang D, Ran H, Wang R, Yao Y, et al. Phase-shifted PFH@PLGA/Fe3O4 nanocapsules for MRI/US imaging and photothermal therapy with near-infrared irradiation. ACS Appl Mater Interfaces 2015; 7:14231-14242. | [62] | Zhang L, Yi H, Song J, Huang J, Yang K, Tan B, et al. Mitochondria-targeted and ultrasound-activated nanodroplets for enhanced deep-penetration sonodynamic cancer therapy. ACS Appl Mater Interfaces 2019; 11:9355-9366. | [63] | Chang N, Qin D, Wu P, Xu S, Wang S, Wan M. IR780 loaded perfluorohexane nanodroplets for efficient sonodynamic effect induced by short-pulsed focused ultrasound. Ultrason Sonochem 2019; 53:59-67. |
|