Advanced Ultrasound in Diagnosis and Therapy ›› 2024, Vol. 8 ›› Issue (3): 116-123.doi: 10.37015/AUDT.2023.230046
• Original Research • Previous Articles Next Articles
Yuzhou Shen, MDa,1, Lin Jin, MDb,1, Lei Sha, MDc, Mengmeng Cao, MDc, Desheng Sun, MDa, Li Liu, MDa,*(), Zhaojun Li, MDc,d,*()
Received:
2023-09-16
Revised:
2023-11-28
Accepted:
2023-12-12
Online:
2024-09-30
Published:
2024-10-16
Contact:
*Department of Ultrasound, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Haining Road, Hongkou District, Shanghai 200080, China. e-mail: lzj_1975@sina.com(LZJ); Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China e-mail: liuli126126@126.com(LL),
About author:
First author contact:1Yuzhou Shen and Lin Jin contributed equally to this work.
Yuzhou Shen, MD, Lin Jin, MD, Lei Sha, MD, Mengmeng Cao, MD, Desheng Sun, MD, Li Liu, MD, Zhaojun Li, MD. Can Different Expertise Levels of Ultrasound Operators Accurately Screen with Handheld Ultrasound?. Advanced Ultrasound in Diagnosis and Therapy, 2024, 8(3): 116-123.
Figure 1
Measurement of carotid artery IMT and hemodynamic parameters using conventional ultrasound and handheld ultrasound equipment. Carotid artery IMT and hemodynamic parameters using conventional ultrasound (A and B); (C,D) Carotid artery IMT and hemodynamic parameters using handheld ultrasound."
Table 1
Comparisons of different observers using conventional ultrasound ($\bar{x}±s$)"
Item | Nursing staff group | Sonographer group | Technician group | P value |
---|---|---|---|---|
Max IMT (mm) | 0.54 ± 0.07 | 0.54 ± 0.07 | 0.54 ± 0.09 | 0.893 |
Mean IMT (mm) | 0.44 ± 0.06 | 0.46 ± 0.07 | 0.44 ± 0.07 | 0.515 |
PSV (cm/s) | 66.94 ± 14.12 | 78.88 ± 10.93* | 82.30 ± 14.32* | < 0.001 |
EDV (cm/s) | 21.73 ± 4.11 | 25.38 ± 3.39* | 24.66 ± 3.43* | 0.003 |
Pulsatility index | 1.74 ± 0.94 | 1.36 ± 0.21 | 1.47 ± 0.29 | 0.373 |
Resistive index | 0.76 ± 0.24 | 0.68 ± 0.04 | 0.70 ± 0.04 | 0.284 |
Systolic-diastolic ratio | 3.11 ± 0.56 | 3.12 ± 0.42 | 3.36 ± 0.49 | 0.141 |
ACCEL (cm/s2) | 665.97 ± 350.53 | 680.08 ± 188.14 | 859.50 ± 254.27*# | 0.016 |
Acceleration time (s) | 0.09 ± 0.05 | 0.08 ± 0.02 | 0.07 ± 0.02 | 0.059 |
TAMEAN (cm/s) | 18.84 ± 5.12 | 24.70 ± 3.67* | 25.67 ± 5.14* | < 0.001 |
Heart rate (bpm) | 71.40 ± 12.41 | 71.52 ± 8.25 | 74.60 ± 10.30 | 0.414 |
Table 2
Comparisons of different observers with handheld ultrasound"
Item | Nursing staff group | Sonographer group | Technician group | P value |
---|---|---|---|---|
Max IMT (mm) | 0.47 ± 0.08 | 0.52 ± 0.07 | 0.46 ± 0.09# | 0.047 |
Mean IMT (mm) | 0.46 ± 0.08 | 0.50 ± 0.07 | 0.45 ± 0.09 | 0.067 |
PSV (cm/s) | 81.12 ± 21.21 | 76.28 ± 13.26 | 83.30 ± 15.42 | 0.357 |
EDV (cm/s) | 20.17 ± 5.90 | 21.87 ± 5.05 | 21.04 ± 4.12 | 0.164 |
Pulsatility index | 1.76 ± 0.45 | 1.52 ± 0.30* | 1.75 ± 0.37# | 0.028 |
Resistive index | 0.75 ± 0.07 | 0.71 ± 0.05 | 0.74 ± 0.05 | 0.057 |
Systolic-diastolic ratio | 4.67 ± 2.44 | 3.54 ± 0.52* | 4.06 ± 0.85# | 0.033 |
ACCEL (cm/s2) | 699.72 ± 281.14 | 625.16 ± 147.76 | 712.64 ± 212.7 | 0.449 |
Acceleration time (s) | 0.10 ± 0.03 | 0.09 ± 0.01 | 0.09 ± 0.02 | 0.404 |
TAMEAN (cm/s) | 21.78 ± 6.07 | 23.98 ± 4.85 | 23.14 ± 4.30 | 0.161 |
Heart rate (bpm) | 73.12 ± 8.96 | 72.80 ± 8.47 | 75.08 ± 9.72 | 0.750 |
Table 3
Comparisons in vitro study of conventional and handheld ultrasounds values ($\bar{x}±s$)"
Items | Depth | Conventional ultrasound | Handheld ultrasound | t value | P value |
---|---|---|---|---|---|
Longitudinal resolution (mm) | 2 cm | 1.01 ± 0.03 | 1.01 ± 0.02 | -0.111 | 0.919 |
3 cm | 0.99 ± 0.01 | 0.99 ± 0.02 | 1.000 | 0.391 | |
4 cm | 1.00 ± 0.04 | 1.01 ± 0.03 | -0.812 | 0.476 | |
5 cm | 0.99 ± 0.03 | 1.00 ± 0.03 | -2.449 | 0.092 | |
Lateral resolution (mm) | 2 cm | 4.18 ± 0.10 | 4.20 ± 0.08 | -0.397 | 0.718 |
3 cm | 4.13 ± 0.10 | 4.18 ± 0.10 | -0.775 | 0.495 | |
4 cm | 4.18 ± 0.13 | 4.05 ± 0.19 | 0.243 | 0.824 | |
5 cm | 4.10 ± 0.08 | 4.12 ± 0.13 | -0.264 | 0.809 |
[1] | Wiley BM, Borlaug BA, Kane GC. Lung ultrasound in heart failure: envisioning handheld ultrasound to empower nurses and transform health care. J Am Coll Cardiol 2022;80:524-526. |
[2] | Jung EM, Dinkel J, Verloh N, Brandenstein M, Stroszczynski C, Jung F, et al. Wireless point-of-care ultrasound: First experiences with a new generation handheld device. Clin Hemorheol Microcirc 2021;79:463-474. |
[3] | Wang YT, Chai HH, Ye RZ, Li JZ, Liu JB, Lin C, et al. Point-of-care ultrasound: new concepts and future trends. Advanced ultrasound in diagnosis and therapy 2021;5:268-276. |
[4] | Liu JY, Xu JJ, Forsberg F, Liu JB. CMUT/CMOS-based Butterfly iQ - A Portable Personal Sonoscope. Advanced ultrasound in diagnosis and therapy 2019;3:115-118. |
[5] | Barnett HJM, Taylor DW, Haynes RB, Sackett DL, Peerless SJ, Ferguson GG, et al. Beneficial effect of carotid endarterectomy in symptomatic patients with high-grade carotid stenosis. N Engl J Med 1991;325:445-453. |
[6] | Arnett DK, Blumenthal RS, Albert MA, Buroker AB, Goldberger ZD, Hahn EJ, et al. 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019;140:e596-e646. |
[7] | Eigenbrodt ML, Evans GW, Rose KM, Bursac Z, Tracy RE, Mehta JL, et al. Bilateral common carotid artery ultrasound for prediction of incident strokes using intima-media thickness and external diameter: an observational study. Cardiovasc Ultrasound 2013;11:22. |
[8] | Hermann DM, Gronewold J, Lehmann N, Seidel UK, Möhlenkamp S, Weimar C, et al. Intima-media thickness predicts stroke risk in the Heinz Nixdorf Recall study in association with vascular risk factors, age and gender. Atherosclerosis 2012;224:84-89. |
[9] | Jin L, Tong LY, Sha L, Cao MM, Shen CQ, Du LF, et al. Handheld versus conventional ultrasound for assessing carotid artery in routine volunteers. Clin Hemorheol Microcirc 2022;82:255-263. |
[10] | Davies KN, Humphrey PR. Complications of cerebral angiography in patients with symptomatic carotid territory ischaemia screened by carotid ultrasound. J Neurol Neurosurg Psychiatry 1993;56: 967-972. |
[11] | Elgersma OE, Buijs PC, Wüst AF, van der Graaf Y, Eikelboom BC, Mali WP. Maximum internal carotid arterial stenosis: assessment with rotational angiography versus conventional intraarterial digital subtraction angiography. Radiology 1999;213:777-783. |
[12] | Weber J, Veith P, Jung B, Ihorst G, Moske-Eick O, Meckel S, et al. MR angiography at 3 Tesla to assess proximal internal carotid artery stenoses: contrast-enhanced or 3D time-of-flight MR angiography? Clin Neuroradiol 2015;25:41-48. |
[13] | Alexandrov AV, Needleman L. Carotid artery stenosis: making complex assessments of a simple problem or simplifying approach to a complex disease? Stroke 2012;43:627-628. |
[14] | Bennett D, De Vita E, Mezzasalma F, Lanzarone N, Cameli P, Bianchi F, et al. Portable Pocket-Sized Ultrasound Scanner for the Evaluation of Lung Involvement in Coronavirus Disease 2019 Patients. Ultrasound Med Biol 2021;47:19-24. |
[15] | Chetioui A, Masia T, Claret PG, Markarian T, Muller L, Lefrant JY, et al. Pocket-sized ultrasound device for internal jugular puncture: A randomized study of performance on a simulation model. J Vasc Access. 2019;20:404-408. |
[16] | Sforza A, Mancusi C, Carlino MV, Buonauro A, Barozzi M, Romano G, et al. Diagnostic performance of multi-organ ultrasound with pocket-sized device in the management of acute dyspnea. Cardiovasc Ultrasound 2017;15:16. |
[17] | Platz E, Pivetta E, Merz AA, Peck J, Rivero J, Cheng S. Impact of device selection and clip duration on lung ultrasound assessment in patients with heart failure. Am J Emerg Med 2015;33:1552-1556. |
[18] | Mancusi C, Carlino MV, Sforza A. Point-of-care ultrasound with pocket-size devices in emergency department. Echocardiography 2019;36:1755-1764. |
[19] | Jang AY RJ, Oh PC, Moon J, Chung WJ. Feasibility and applicability of wireless handheld ultrasound measurement of carotid intimamedia thickness in patients with cardiac symptoms. Yonsei Med J 2020;61: 129-136. |
[20] | Kim DH, Shin S, Kim N, Choi T, Choi SH, Choi YS. Carotid ultrasound measurements for assessing fluid responsiveness in spontaneously breathing patients: corrected flow time and respirophasic variation in blood flow peak velocity. Br J Anaesth. 2018;121:541-549. |
[21] | Corriveau MM, Johnston KW. Interobserver variability of carotid Doppler peak velocity measurements among technologists in an ICAVL-accredited vascular laboratory. J Vasc Surg 2004;39:735-741. |
[22] | Gill RW. Measurement of blood flow by ultrasound: accuracy and sources of error. Ultrasound Med Biol 1985;11:625-641. |
[23] | Eicke BM, Kremkau FW, Hinson H, Tegeler CH. Peak velocity overestimation and linear-array spectral Doppler. J Neuroimaging 1995;5:115-121. |
[1] | Huihui Chai, MS, Xiaowan Bo, MD, Lehang Guo, MD, Chengzhong Peng, MD. Experience and Enlightenment of Handheld Ultrasound Applications in Multiple Scenarios Based on 5G Technology [J]. Advanced Ultrasound in Diagnosis and Therapy, 2023, 7(4): 356-365. |
[2] | Cancan Cui, MD, Zhaojun Li, PhD, Yanping Lin, PhD. Advances in Intelligent Segmentation and 3D/4D Reconstruction of Carotid Ultrasound Imaging [J]. Advanced Ultrasound in Diagnosis and Therapy, 2023, 7(2): 140-151. |
[3] | Wenjun Zhang, MD, Mi Zhou, PhD, Qingguo Meng, MD, Lin Zhang, MS, Xin Liu, MS, Paul Liu, PhD, Dong Liu, PhD. Rapid Screening of Carotid Plaque in Cloud Handheld Ultrasound System Based on 5G and AI Technology [J]. Advanced Ultrasound in Diagnosis and Therapy, 2023, 7(2): 152-157. |
[4] | Zehui Fu, MD, Chuxue Sun, MD, Haixia Zhou, MD, Xiaowen Lv, MD, Siqi Wang, MD, Hui Chen, MD. Multimodal Vascular Ultrasound Findings in A Young Female with Internal Carotid Artery Dissection [J]. Advanced Ultrasound in Diagnosis and Therapy, 2023, 7(1): 28-31. |
[5] | Qiaoer Gong, BS, Nianyu Xue, MS. Application and Progress of Ultrasound Technology in Atherosclerosis [J]. Advanced Ultrasound in Diagnosis and Therapy, 2023, 7(1): 8-15. |
[6] | Zhaojun Li, MD, PhD, Cuiqin Shen, MS, Qingqing Chen, MB, Lei Sha, MB, Xianghong Luo, MD, PhD, Lianfang Du, MD, PhD. Shear Wave Dispersion Imaging for Measuring Carotid Elasticity and Viscosity [J]. Advanced Ultrasound in Diagnosis and Therapy, 2022, 6(1): 14-21. |
[7] | Chaolun Li, MD, Lingying Ma, MD, Linjin Huang, MD, Hong Han, MD, Lingdi Jiang, MD, Wenping Wang, MD. Use of Contrast-Enhanced Ultrasound for Detecting the Disease Activity of the Carotid Artery in Takayasu Arteritis [J]. Advanced Ultrasound in Diagnosis and Therapy, 2020, 4(3): 189-194. |
[8] | Limei Chen, MS, Ananta Adhikari, MS, Jianwen Guo, MD, Jingxin Zhong, MS, Guangjian Liu, MD, Feng Zhang, MS. Bilateral Carotid Dissection Caused by a Dog Bite: Case Report and Review of the Literature [J]. Advanced Ultrasound in Diagnosis and Therapy, 2020, 4(3): 230-233. |
[9] | Xianghong Luo, MD, Jianhui Zhang, MD, Sihui Shao, MD, Min Yan, MD, Rong Wu, MD, Lianfang Du, MD, Zhaojun Li, MD. The Role of Ultrasound Shear Wave Dispersion Imaging in Evaluating Carotid Viscoelasticity:A Preliminary Study [J]. Advanced Ultrasound in Diagnosis and Therapy, 2019, 3(3): 97-102. |
[10] | Xing Yu, Yaoyao Cui, Yuankai Xuan, Tingyi Jiang, Ligang Cui. Application and Development of Handheld Ultrasound in the Field of Medicine and Healthcare [J]. Advanced Ultrasound in Diagnosis and Therapy, 2018, 2(2): 155-160. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Share: WeChat
Copyright ©2018 Advanced Ultrasound in Diagnosis and Therapy
|
Advanced Ultrasound in Diagnosis and Therapy (AUDT) a> is licensed under a Creative Commons Attribution 4.0 International License a>.