[1] |
Facts Figures American Cancer Society, Amer. Cancer Soc., Atlanta, GA, USA, 2021.
|
[2] |
Winer-Muram HT. The solitary pulmonary nodule. Radiology 2006; 239:34-49.
doi: 10.1148/radiol.2391050343
pmid: 16567482
|
[3] |
Niki N, Kawata Y, Kubo M. ACADsystem for lung cancer based on CT image. In: International Congress Series. Elsevier 2001; 1230: 631-638.
|
[4] |
Abe Y, Hanai K, Nakano M, Ohkubo Y, Hasizume T, Kakizaki T, et al. A computer-aided diagnosis (CAD) system in lung cancer screening with computed tomography. Anticancer Res 2005; 25:483-488.
pmid: 15816616
|
[5] |
El-Baz A, Beache GM, Gimel’farb G, Suzuki K, Okada K, Elnakib A, et al. Computer-aided diagnosis systems for lung cancer: challenges and methodologies. Int J Biomed Imaging 2013; 2013:46.
|
[6] |
Awan R, Koohbanani NA, Shaban M, Lisowska A, Rajpoot N, et al. Context-aware learning using transferable features for classification of breast cancer histology images. Springer, Cham 2018:788-795.
|
[7] |
Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 2016; 316:2402-2410.
doi: 10.1001/jama.2016.17216
pmid: 27898976
|
[8] |
Farooq A, Anwar SM, Awais M, Rehman S. A deep CNN based multi-class classification of Alzheimer's disease using MRI. IEEE 2017:1-6.
|
[9] |
Islam MZ, Islam MM, Asraf A. A combined deep CNN-LSTM network for the detection of novel coronavirus (COVID-19) using X-ray images. Inform Med Unlocked 2020; 20:100412.
doi: 10.1016/j.imu.2020.100412
|
[10] |
Shanthi T, Sabeenian R S. Modified AlexNet architecture for classification of diabetic retinopathy images. Computers & Electrical Engineering 2019; 76:56-64.
|
[11] |
Li X, Shen L, Xie X, Huang S, Xie Z, Hong X, et al. Multi-resolution convolutional networks for chest X-ray radiograph based lung nodule detection. Artificial intelligence in medicine 2020; 103:101744.
doi: 10.1016/j.artmed.2019.101744
|
[12] |
Labati RD, Muñoz E, Piuri V, Sassi R, Scotti F. Deep-ECG: Convolutional neural networks for ECG biometric recognition. Pattern Recognition Letters 2019; 126:78-85.
doi: 10.1016/j.patrec.2018.03.028
|
[13] |
Ma X, Dai Z, He Z, Ma J, Wang Y, Wang Y. Learning Traffic as Images: A deep convolutional neural network for large-scale transportation network speed prediction. Sensors (Basel) 201; 17:818.
doi: 10.3390/s17040818
|
[14] |
Huang S, Li F, Chen Q. Computational tomography image classification algorithm based on improved deep residual network. Acta Optics 2020; 456:56-64.
|
[15] |
Fulton LV, Dolezel D, Harrop J, Yan Y, Fulton CP.Classification of Alzheimer's disease with and without imagery using gradient boosted machines and resnet-50. Brain Sci 2019; 9:212.
doi: 10.3390/brainsci9090212
|
[16] |
Dey R, Lu Z, Hong Y.Diagnostic classification of lung nodules using 3D neural networks. IEEE 2018:774-778.
|
[17] |
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv 2014; 1409.1556.
|
[18] |
He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition. 2016:770-778.
|
[19] |
Huang G, Liu Z, Van Der Maaten L, Weinberger KQ. Densely connected convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition. 2017:4700-4708.
|
[20] |
Zhang K, Guo Y, Wang X, Yuan J, Ding Q. Multiple features reweight densenet for image classification. IEEE Access 2019; 7:9872-9880.
doi: 10.1109/ACCESS.2018.2890127
|
[21] |
Iandola F, Moskewicz M, Karayev S, Girshick R, Darrell T, Keutzer K. Densenet: Implementing efficient convnet descriptor pyramids. arXiv preprint arXiv 2014; 1404.1869.
|
[22] |
Tong W, Chen W, Han W, Li X, Wang L. Channel-attention-based DenseNet network for remote sensing image scene classification. IEEE J Sel Top Appl Earth Obs Remote Sens 2020; 13:4121-4132.
doi: 10.1109/JSTARS.4609443
|
[23] |
Chen X, Williams BM, Vallabhaneni SR, Czanner G, Williams R, Zheng Y. (2019). Learning active contour models for medical image segmentation. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019:11632-11640
|
[24] |
Xu X, Lin J, Tao Y, Wang X. An improved DenseNet method based on transfer learning for fundus medical images. IEEE 2018:137-140.
|
[25] |
Zunair H, Rahman A, Mohammed N, Cohen JP.Uniformizing techniques to process CT scans with 3D CNNs for tuberculosis prediction. Springer, Cham 2020:156-168.
|
[26] |
Lee Y, Hwang J, Lee S, Bae Y, Park J.An energy and GPU-computation efficient backbone network for real-time object detection. 2019.
|