[1] |
Anziska Y, Sternberg A. Exercise in neuromuscular disease. Muscle Nerve 2013; 48:3-20.
doi: 10.1002/mus.23771 pmid: 23695822 |
[2] |
Sáez A, Acha B, Montero-Sánchez A, Rivas E, Escudero LM, Serrano C. Neuromuscular disease classification system. J Biomed Opt 2013; 18:066017.
doi: 10.1117/1.JBO.18.6.066017 |
[3] |
Fischer D, Bonati U, Wattjes MP. Recent developments in muscle imaging of neuromuscular disorders. Curr Opin Neurol 2016; 29:614-620.
doi: 10.1097/WCO.0000000000000364 pmid: 27427989 |
[4] |
Simon NG, Noto YI, Zaidman CM. Skeletal muscle imaging in neuromuscular disease. J Clin Neurosci 2016; 33:1-10.
doi: S0967-5868(16)30331-9 pmid: 27612670 |
[5] |
Pillen S, van Alfen N, Zwarts MJ. Muscle ultrasound: a grown-up technique for children with neuromuscular disorders. Muscle Nerve 2008; 38:1213-1214.
doi: 10.1002/mus.21085 pmid: 18642384 |
[6] |
Gore JC. Artificial intelligence in medical imaging. Magn Reson Imaging 2020; 68:a1-a4.
doi: 10.1016/j.mri.2019.12.006 pmid: 31857130 |
[7] |
Rozynek M, Kucybała I, Urbanik A, Wojciechowski W. Use of artificial intelligence in the imaging of sarcopenia: a narrative review of current status and perspectives. Nutrition 2021; 89:111227.
doi: 10.1016/j.nut.2021.111227 |
[8] |
Wijntjes J, van Alfen N. Muscle ultrasound: present state and future opportunities. Muscle Nerve 2021; 63:455-466.
doi: 10.1002/mus.27081 pmid: 33051891 |
[9] |
Akkus Z, Cai J, Boonrod A, Zeinoddini A, Weston AD, Philbrick KA, et al. A survey of deep-learning applications in ultrasound: artificial intelligence-powered ultrasound for improving clinical workflow. J Am Coll Radiol 2019; 16:1318-1328.
doi: S1546-1440(19)30711-2 pmid: 31492410 |
[10] |
Naruse M, Trappe S, Trappe TA. Human skeletal muscle size with ultrasound imaging: a comprehensive review. J Appl Physiol 2022; 132:1267-1279.
doi: 10.1152/japplphysiol.00041.2022 |
[11] |
Nijholt W, Scafoglieri A, Jager-Wittenaar H, Hobbelen JSM, van der Schans CP. The reliability and validity of ultrasound to quantify muscles in older adults: a systematic review. J Cachexia Sarcopenia Muscle 2017; 8:702-712.
doi: 10.1002/jcsm.12210 pmid: 28703496 |
[12] |
Fukumoto Y, Ikezoe T, Taniguchi M, Yamada Y, Sawano S, Minani S, et al. Cut-off values for lower limb muscle thickness to detect low muscle mass for sarcopenia in older adults. Clin Interv Aging 2021; 16:1215-1222.
doi: 10.2147/CIA.S304972 pmid: 34211270 |
[13] |
Goubert D, De Pauw R, Meeus M, Willems T, Cagnie B, Schouppe S, et al. Lumbar muscle structure and function in chronic versus recurrent low back pain: a cross-sectional study. Spine J 2017; 17:1285-1296.
doi: S1529-9430(17)30182-1 pmid: 28456669 |
[14] |
Seyedhoseinpoor T, Taghipour M, Dadgoo M, Sanjari MA, Takamjani IE, Kazemnejad A, et al. Alteration of lumbar muscle morphology and composition in relation to low back pain: a systematic review and meta-analysis. Spine J 2022; 22:660-676.
doi: 10.1016/j.spinee.2021.10.018 |
[15] | Reeves ND, Maganaris CN, Narici MV. Ultrasonographic assessment of human skeletal muscle size. Eur J Appl Physiol 2004; 91:116-118. |
[16] |
Macrae PR, Jones RD, Myall DJ, Melzer TR, Huckabee ML. Cross-sectional area of the anterior belly of the digastric muscle: comparison of MRI and ultrasound measures. Dysphagia 2013; 28:375-380.
doi: 10.1007/s00455-012-9443-8 pmid: 23334304 |
[17] | Mendis MD, Wilson SJ, Stanton W, Hides JA. Validity of real-time ultrasound imaging to measure anterior hip muscle size: a comparison with magnetic resonance imaging. J Orthop Sports Phys Ther 2010; 40:577-581. |
[18] |
Latey PJ, Burns J, Nightingale EJ, Clarke JL, Hiller CE. Reliability and correlates of cross-sectional area of abductor hallucis and the medial belly of the flexor hallucis brevis measured by ultrasound. J Foot Ankle Res 2018; 11:28.
doi: 10.1186/s13047-018-0259-0 pmid: 29977344 |
[19] |
Franchi MV, Longo S, Mallinson J, Quinlan JI, Taylor T, Greenhaff PL, et al. Muscle thickness correlates to muscle cross-sectional area in the assessment of strength training-induced hypertrophy. Scand J Med Sci Sports 2018; 28:846-853.
doi: 10.1111/sms.2018.28.issue-3 |
[20] |
Mohseny B, Nijhuis TH, Hundepool CA, Janssen WG, Selles RW, Coert JH. Ultrasonographic quantification of intrinsic hand muscle cross-sectional area; reliability and validity for predicting muscle strength. Arch Phys Med Rehabil 2015; 96:845-853.
doi: 10.1016/j.apmr.2014.11.014 |
[21] |
Timmins RG, Shield AJ, Williams MD, Lorenzen C, Opar DA. Architectural adaptations of muscle to training and injury: a narrative review outlining the contributions by fascicle length, pennation angle and muscle thickness. Br J Sports Med 2016; 50:1467-1472.
doi: 10.1136/bjsports-2015-094881 |
[22] |
Pillen S, Arts IM, Zwarts MJ. Muscle ultrasound in neuromuscular disorders. Muscle Nerve 2008; 37:679-693.
doi: 10.1002/mus.21015 pmid: 18506712 |
[23] |
Heckmatt JZ, Leeman S, Dubowitz V. Ultrasound imaging in the diagnosis of muscle disease. J Pediatr 1982; 101:656-660.
doi: 10.1016/S0022-3476(82)80286-2 |
[24] |
Zaidman CM, Wu JS, Kapur K, Pasternak A, Madabusi L, Yim S, et al. Quantitative muscle ultrasound detects disease progression in duchenne muscular dystrophy. Ann Neurol 2017; 81:633-640.
doi: 10.1002/ana.24904 pmid: 28241384 |
[25] |
Simon NG, Ralph JW, Lomen-Hoerth C, Poncelet AN, Vucic S, Kiernan MC, et al. Quantitative ultrasound of denervated hand muscles. Muscle Nerve 2015; 52:221-230.
doi: 10.1002/mus.24519 pmid: 25388871 |
[26] |
Pichiecchio A, Alessandrino F, Bortolotto C, Cerica A, Rosti C, Raciti MV, et al. Muscle ultrasound elastography and MRI in preschool children with duchenne muscular dystrophy. Neuromuscul Disord 2018; 28:476-483.
doi: 10.1016/j.nmd.2018.02.007 |
[27] |
Harada R, Taniguchi-Ikeda M, Nagasaka M, Nishii T, Inui A, Yamamoto T, et al. Assessment of the upper limb muscles in patients with fukuyama muscular dystrophy: noninvasive assessment using visual ultrasound muscle analysis and shear wave elastography. Neuromuscul Disord 2022; 32:754-762.
doi: 10.1016/j.nmd.2022.05.004 |
[28] |
Lacourpaille L, Hug F, Guével A, Péréon Y, Magot A, Hogrel JY, et al. Non-invasive assessment of muscle stiffness in patients with duchenne muscular dystrophy. Muscle Nerve 2015; 51:284-286.
doi: 10.1002/mus.24445 pmid: 25187068 |
[29] |
Lacourpaille L, Gross R, Hug F, Guével A, Péréon Y, Magot A, et al. Effects of duchenne muscular dystrophy on muscle stiffness and response to electrically-induced muscle contraction: a 12-month follow-up. Neuromuscul Disord 2017; 27:214-220.
doi: 10.1016/j.nmd.2017.01.001 |
[30] |
Pillen S, Scholten RR, Zwarts MJ, Verrips A. Quantitative skeletal muscle ultrasonography in children with suspected neuromuscular disease. Muscle Nerve 2003; 27:699-705.
pmid: 12766981 |
[31] |
Boon AJ, Wijntjes J, O'Brien TG, Sorenson EJ, Cazares Gonzalez ML, van Alfen N. Diagnostic accuracy of gray scale muscle ultrasound screening for pediatric neuromuscular disease. Muscle Nerve 2021; 64:50-58.
doi: 10.1002/mus.v64.1 |
[32] | Sogawa K, Nodera H, Takamatsu N, Mori A, Yamazaki H, Shimatani Y, et al. Neurogenic and myogenic diseases: quantitative texture analysis of muscle us data for differentiation. Radiology 2017; 28:492-498. |
[33] |
Ríos-Díaz J, Del Baño-Aledo ME, Tembl-Ferrairó JI, Chumillas MJ, Vázquez-Costa JF, Martínez-Payá JJ. Quantitative neuromuscular ultrasound analysis as biomarkers in amyotrophic lateral sclerosis. Eur Radiol 2019; 29:4266-4275.
doi: 10.1007/s00330-018-5943-8 pmid: 30666448 |
[34] |
Martínez-Payá JJ, Ríos-Díaz J, Del Baño-Aledo ME, Tembl-Ferrairó JI, Vazquez-Costa JF, Medina-Mirapeix F. Quantitative muscle ultrasonography using textural analysis in amyotrophic lateral sclerosis. Ultrason Imaging 2017; 39:357-368.
doi: 10.1177/0161734617711370 pmid: 28553752 |
[35] |
Martínez-Payá JJ, Del Baño-Aledo ME, Ríos-Díaz J, Tembl-Ferrairó JI, Vázquez-Costa JF, Medina-Mirapeix F. Muscular echovariation: a new biomarker in amyotrophic lateral sclerosis. Ultrasound Med Biol 2017; 43:1153-1162.
doi: S0301-5629(17)30058-3 pmid: 28395965 |
[36] | John EP, Ziyin ZMD, Ji-Bin LMD, Shuo WBS. Artificial intelligence in ultrasound imaging: current research and applications. Advanced Ultrasound in Diagnosis and Therapy 2019;3. |
[37] | Barotsis N, Galata A, Hadjiconstanti A, Panayiotakis G. The ultrasonographic measurement of muscle thickness in sarcopenia. a prediction study. Eur J Phys Rehabil Med 2020; 56:427-437. |
[38] |
Caresio C, Salvi M, Molinari F, Meiburger KM, Minetto MA. Fully automated muscle ultrasound analysis (MUSA): robust and accurate muscle thickness measurement. Ultrasound Med Biol 2017; 43:195-205.
doi: S0301-5629(16)30268-X pmid: 27720522 |
[39] | Katakis S, Barotsis N, Kakotaritis A, Tsiganos P, Economou G, Panagiotopoulos E, et al. Muscle cross-sectional area segmentation in transverse ultrasound images using vision transformers. Diagnostics 2023;13. |
[40] |
Salvi M, Caresio C, Meiburger KM, De Santi B, Molinari F, Minetto MA. Transverse muscle ultrasound analysis (TRAMA): robust and accurate segmentation of muscle cross-sectional area. Ultrasound Med Biol 2019; 45:672-683.
doi: S0301-5629(18)30523-4 pmid: 30638696 |
[41] | Katakis S, Barotsis N, Kakotaritis A, Economou G, Panagiotopoulos E, Panayiotakis G. Automatic extraction of muscle parameters with attention UNet in ultrasonography. Sensors 2022;22. |
[42] |
Ritsche P, Wirth P, Cronin NJ, Sarto F, Narici MV, Faude O, et al. DeepACSA: automatic segmentation of cross-sectional area in ultrasound images of lower limb muscles using deep learning. Med Sci Sports Exerc 2022; 54:2188-2195.
doi: 10.1249/MSS.0000000000003010 |
[43] |
Marzola F, van Alfen N, Doorduin J, Meiburger KM. Deep learning segmentation of transverse musculoskeletal ultrasound images for neuromuscular disease assessment. Comput Biol Med 2021; 135:104623.
doi: 10.1016/j.compbiomed.2021.104623 |
[44] |
Saleh A, Laradji IH, Lammie C, Vazquez D, Flavell CA, Azghadi MR. A deep learning localization method for measuring abdominal muscle dimensions in ultrasound images. IEEE J Biomed Health Inform 2021; 25:3865-3873.
doi: 10.1109/JBHI.2021.3085019 |
[45] |
Chanti DA, Duque VG, Crouzier M, Nordez A, Lacourpaille L, Mateus D. IFSS-Net: interactive few-shot siamese network for faster muscle segmentation and propagation in volumetric ultrasound. IEEE Trans Med Imaging 2021; 40:2615-2628.
doi: 10.1109/TMI.2021.3058303 |
[46] |
Loram I, Siddique A, Sanchez MB, Harding P, Silverdale M, Kobylecki C, et al. Objective analysis of neck muscle boundaries for cervical dystonia using ultrasound imaging and deep learning. IEEE J Biomed Health Inform 2020; 24:1016-1027.
doi: 10.1109/JBHI.6221020 |
[47] |
Chen X, Xie C, Chen Z, Li Q. Automatic tracking of muscle cross-sectional area using convolutional neural networks with ultrasound. J Ultrasound Med 2019; 38:2901-2908.
doi: 10.1002/jum.14995 pmid: 30937932 |
[48] |
Zhou GQ, Chan P, Zheng YP. Automatic measurement of pennation angle and fascicle length of gastrocnemius muscles using real-time ultrasound imaging. Ultrasonics 2015; 57:72-83.
doi: 10.1016/j.ultras.2014.10.020 |
[49] | Rosa LG, Zia JS, Inan OT, Sawicki GS. Machine learning to extract muscle fascicle length changes from dynamic ultrasound images in real-time. PloS one 2021; 16:e0246611. |
[50] |
Jahanandish MH, Fey NP, Hoyt K. Lower limb motion estimation using ultrasound imaging: a framework for assistive device control. IEEE J Biomed Health Inform 2019; 23:2505-2514.
doi: 10.1109/JBHI.6221020 |
[51] |
König T, Steffen J, Rak M, Neumann G, von Rohden L, Tönnies KD. Ultrasound texture-based CAD system for detecting neuromuscular diseases. Int J Comput Assist Radiol Surg 2015; 10:1493-1503.
doi: 10.1007/s11548-014-1133-6 pmid: 25451320 |
[52] |
Srivastava T, Darras BT, Wu JS, Rutkove SB. Machine learning algorithms to classify spinal muscular atrophy subtypes. Neurology 2012; 79:358-364.
doi: 10.1212/WNL.0b013e3182604395 pmid: 22786588 |
[53] | Burlina P, Billings S, Joshi N, Albayda J. Automated diagnosis of myositis from muscle ultrasound: exploring the use of machine learning and deep learning methods. PloS one 2017;12. |
[54] | Cunningham R, Harding P, Loram I. Deep residual networks for quantification of muscle fiber orientation and curvature from ultrasound images. Med Image Underst Anal Conf 2017:63-73. |
[55] | Cunningham R, Sánchez M, May G, Loram I. Estimating full regional skeletal muscle fibre orientation from B-mode ultrasound images using convolutional, residual, and deconvolutional neural networks. J Imaging 2018;4. |
[56] | Cunningham RJ, Loram ID. Estimation of absolute states of human skeletal muscle via standard B-mode ultrasound imaging and deep convolutional neural networks. J R Soc Interface 2020; 17:20190715. |
[57] |
Li H, Bhatt M, Qu Z, Zhang S, Hartel MC, Khademhosseini A, et al. Deep learning in ultrasound elastography imaging: a review. Med Phys 2022; 49:5993-6018.
doi: 10.1002/mp.v49.9 |
[58] |
Dana J, Venkatasamy A, Saviano A, Lupberger J, Hoshida Y, Vilgrain V, et al. Conventional and artificial intelligence-based imaging for biomarker discovery in chronic liver disease. Hepatol Int 2022; 16:509-522.
doi: 10.1007/s12072-022-10303-0 pmid: 35138551 |
[59] |
Secasan CC, Onchis D, Bardan R, Cumpanas A, Novacescu D, Botoca C, et al. Artificial intelligence system for predicting prostate cancer lesions from shear wave elastography measurements. Curr Oncol 2022; 29:4212-4223.
doi: 10.3390/curroncol29060336 pmid: 35735445 |
No related articles found! |
|