Advanced Ultrasound in Diagnosis and Therapy ›› 2025, Vol. 9 ›› Issue (4): 307-325.doi: 10.26599/AUDT.2025.250100
Previous Articles Next Articles
Zheng Haironga,*(
), Meng Longa, Li Feia, Niu Lilia, Qiu Weibaoa, Ma Tenga, Liu Chengboa, Zhu Xuefengb, Wan Liwena, Cai Feiyana
Received:2025-09-25
Revised:2025-10-11
Accepted:2025-10-28
Online:2025-12-30
Published:2025-11-06
Contact:
Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China (Hairong Zheng),e-mail: hr.zheng@siat.ac.cn (HR Z).,
Zheng Hairong, Meng Long, Li Fei, Niu Lili, Qiu Weibao, Ma Teng, Liu Chengbo, Zhu Xuefeng, Wan Liwen, Cai Feiyan. Advance in Ultrasound Super-resolution Imaging, Cell Manipulation and Inter-brain Communication. Advanced Ultrasound in Diagnosis and Therapy, 2025, 9(4): 307-325.
Figure 2
(A) Transcranial ULM images compared with CT on patient’s brain [55]; (B) The ULM of stroke rat compared with DWI-MRI [56]; (C) Transthoracic ULM on human’s heart [57]; (D) 3D ULM of rat heart and primate brain [58,59]; (E) Small animal high-resolution ultrasound imaging system and the acquired high-resolution structural images of the rat heart and rat brain; (F) The programmable high-frequency ultrasound imaging system and the obtained hemodynamic imaging (pictures provided by HYUS with permission)."
Figure 3
Schematic diagram of the main classifications of photoacoustic imaging techniques and their corresponding spatial resolutions [3,63,82]. (A) Photoacoustic computed tomography (PACT) is suitable for imaging at a depth of the centimeter level [83]; (B) Acoustic-resolution photoacoustic microscopy (AR-PAM) and (C) Optical-resolution photoacoustic microscopy (OR-PAM) are photoacoustic microscopic imaging techniques used for high-resolution imaging at the millimeter level and in the micrometer to sub-micrometer scale, respectively."
Figure 4
(A) A schematic of the prototype of an acoustic rectifier; (B) An acoustic Mie scatterer; (C) A passive parity-time acoustic metamaterial; (D) A unit-cell of bubble metamaterial; (E) A stretchable meta-lens for the acoustic zoom imaging; (F) Bacterial cellulose based ultrasonic metasurface with self-healing capability; (G) On-chip topological phononic crystal hosting valley states with robust edge transport; (H) On-chip elastic metasurface for high-quality SAW focusing."
Figure 7
(A) Acoustic-wave noninvasive BCI [138]; (B) Ultrasound modulates neuronal electrical activity through mechanosensitive ion channels to achieve ultrasound writing [139]; (C) Ultrasound decodes behavioral intentions in nonhuman primates through cerebral blood flow functional imaging [140]."
| [1] | Couture O , Besson B , Montaldo G , Fink M , Tanter M . Microbubble ultrasound super-localization imaging (MUSLI). In: 2011 IEEE International Ultrasonics Symposium; Orlando, FL 2011. 1285-1287. |
| [2] |
Errico C , Pierre J , Pezet S , Desailly Y , Lenkei Z , Couture O , et al . Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging. Nature 2015; 527: 499-502.
doi: 10.1038/nature16066 |
| [3] |
Kim J , Kim JY , Jeon S , Baik JW , Cho SH , Kim C . Super-resolution localization photoacoustic microscopy using intrinsic red blood cells as contrast absorbers. Light Sci Appl 2019; 8: 103.
doi: 10.1038/s41377-019-0220-4 |
| [4] |
Li X , Deng Z , Zhang W , Zhou W , Liu X , Quan H , et al . Oscillating microbubble array–based metamaterials (OMAMs) for rapid isolation of high-purity exosomes. Sci Adv 2025; 11: eadu8915.
doi: 10.1126/sciadv.adu8915 |
| [5] |
Ye J , Tang S , Meng L , Li X , Wen X , Chen S , et al . Ultrasonic control of neural activity through activation of the mechanosensitive channel MscL. Nano Lett 2018; 18: 4148-4155.
doi: 10.1021/acs.nanolett.8b00935 |
| [6] | Beisteiner R , Matt E , Fan C , Baldysiak H , Schönfeld M , Philippi Novak T , et al . Transcranial pulse stimulation with ultrasound in Alzheimer's disease—a new navigated focal brain therapy. Adv Sci (Weinh) 2019; 7: 1902583 |
| [7] |
Lin Z , Meng L , Zou J , Zhou W , Huang X , Xue S , et al . Non-invasive ultrasonic neuromodulation of neuronal excitability for treatment of epilepsy. Theranostics 2020; 10: 5514-5526.
doi: 10.7150/thno.40520 |
| [8] |
Wang Y-F , Wang Y-Z , Wu B , Chen W , Wang Y-S . Tunable and active phononic crystals and metamaterials. Appl Mech Rev 2020; 72: 040801.
doi: 10.1115/1.4046222 |
| [9] | Huang L , Bao S-C , Cai F , Meng L , Zhou W , Zhou J , et al. Acoustic rotation of multiple subwavelength cylinders for three-dimensional topography reconstruction. J Appl Phys 2023;134. |
| [10] | Huang L , Li F , Cai F , Meng L , Zhou W , Kong D , et al. Phononic crystal-induced standing Lamb wave for the translation of subwavelength microparticles. Appl Phys Lett 2022;121. |
| [11] |
Li F , Cai F , Liu Z , Meng L , Qian M , Wang C , et al . Phononic-crystal-based acoustic sieve for tunable manipulations of particles by a highly localized radiation force. Physical Review Applied 2014; 1: 051001.
doi: 10.1103/PhysRevApplied.1.051001 |
| [12] |
Li F , Cai F , Zhang L , Liu Z , Li F , Meng L , et al . Phononic-crystal-enabled dynamic manipulation of microparticles and cells in an acoustofluidic channel. Physical Review Applied 2020; 13: 044077.
doi: 10.1103/PhysRevApplied.13.044077 |
| [13] | Jiang Q , Hu L , Geng G , Li J , Wang Y , Huang L . Arbitrary amplitude and phase control in visible by dielectric metasurface. Opt Express 2022; 30: 13530-13539 |
| [14] | Li ZL , Huang LX , Sun QL , Zhao YJ , Li PQ , Peng YG , et al. 3D acoustic imaging hitting the diffraction limit via fully Parameter-optimized meta-lens and frequency-domain reconstruction. Adv Mater 2025:e08453. |
| [15] | Zhou H , Li F , Lin Z , Meng L , Chen D , Zhang Q , et al . Holographic ultrasound modulates neural activity in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse model of Parkinson's disease. Research (Wash D C) 2024; 7: 0516 |
| [16] |
Xu M , Wang J , Harley WS , Lee PVS , Collins DJ . Programmable acoustic holography using medium-sound-speed modulation. Adv Sci (Weinh) 2023; 10: e2301489.
doi: 10.1002/advs.202301489 |
| [17] |
Yamamoto J , Iwai T . Highly controllable optical tweezers using dynamic electronic holograms. Curr Pharm Biotechnol 2012; 13: 2655-2662.
doi: 10.2174/138920101314151120122925 |
| [18] |
Gu Y , Chen C , Rufo J , Shen C , Wang Z , Huang PH , et al . Acoustofluidic holography for micro- to nanoscale particle manipulation. ACS Nano 2020; 14: 14635-14645.
doi: 10.1021/acsnano.0c03754 |
| [19] | Li C , Xu G , Wang Y , Huang L , Cai F , Meng L , et al. Acoustic-holography-patterned primary hepatocytes possess liver functions. Biomaterials 2024 Dec;311:122691. |
| [20] |
Hölzl K , Lin S , Tytgat L , Van Vlierberghe S , Gu L , Ovsianikov A . Bioink properties before, during and after 3D bioprinting. Biofabrication 2016; 8: 032002.
doi: 10.1088/1758-5090/8/3/032002 |
| [21] |
Fleischman A , Rushabh M , Anuja N , James T , Geoffrey L , Lockwood S . Miniature high frequency focused ultrasonic transducers for minimally invasive imaging procedures. Sensor Actuat A-phys 2003; 103: 76-82.
doi: 10.1016/S0924-4247(02)00323-0 |
| [22] |
Meng L , Cai F , Li F , Zhou W , Niu L , Zheng H . Acoustic tweezers. Journal of Physics D: Applied Physics 2019; 52: 273001.
doi: 10.1088/1361-6463/ab16b5 |
| [23] |
Ozcelik A , Rufo J , Guo F , Gu Y , Li P , Lata J , et al . Acoustic tweezers for the life sciences. Nat Methods 2018; 15: 1021-1028.
doi: 10.1038/s41592-018-0222-9 |
| [24] |
Yang S , Rufo J , Chen Y , Chen C , Drinkwater BW , Lee LP , et al . Acoustic tweezers for advancing precision biology and medicine. Nature Reviews Methods Primers 2025; 5: 49.
doi: 10.1038/s43586-025-00415-w |
| [25] | Qiao Y , Gong M , Wang H , Lan J , Liu T , Liu J , et al. Acoustic radiation force on a free elastic sphere in a viscous fluid: Theory and experiments. Physics of Fluids 2021;33. |
| [26] |
Cai F , Meng L , Jiang C , Pan Y , Zheng H . Computation of the acoustic radiation force using the finite-difference time-domain method. J Acoust Soc Am 2010; 128: 1617-1622.
doi: 10.1121/1.3474896 |
| [27] | Zhou J , Han F , Huang L , Wen Y , Cai F , Meng L , et al. Effect of particle size on acoustic vortex manipulation of Mie particles. Journal of Applied Physics 2025;137. |
| [28] | Gor’kov LP . On the forces acting on a small particle in an acoustical field in an ideal fluid. 2014:315-317. |
| [29] |
Sarvazyan AP , Rudenko OV , Nyborg WL . Biomedical applications of radiation force of ultrasound: historical roots and physical basis. Ultrasound Med Biol 2010; 36: 1379-1394.
doi: 10.1016/j.ultrasmedbio.2010.05.015 |
| [30] |
Nyborg WL . Acoustic Streaming near a Boundary. The Journal of the Acoustical Society of America 1958; 30: 329-339.
doi: 10.1121/1.1909587 |
| [31] |
Boluriaan S , Morris P . Acoustic streaming: From rayleigh to today. International Journal of Aeroacoustics 2003; 2: 255-292.
doi: 10.1260/147547203322986142 |
| [32] | Li F , Yan F , Chen Z , Lei J , Yu J , Chen M , et al. Phononic crystal-enhanced near-boundary streaming for sonoporation. Applied Physics Letters 2018;113. |
| [33] |
Nam H , Park JE , Waheed W , Alazzam A , Sung HJ , Jeon JS . Acoustofluidic lysis of cancer cells and Raman spectrum profiling. Lab Chip 2023; 23: 4117-4125.
doi: 10.1039/D3LC00550J |
| [34] |
Chen X , Ning Y , Pan S , Liu B , Chang Y , Pang W , et al . Mixing during trapping enabled a continuous-flow microfluidic smartphone immunoassay using acoustic streaming. ACS Sens 2021; 6: 2386-2394.
doi: 10.1021/acssensors.1c00602 |
| [35] |
Draz MS , Dupouy D , Gijs MAM . Acoustofluidic large-scale mixing for enhanced microfluidic immunostaining for tissue diagnostics. Lab Chip 2023; 23: 3258-3271.
doi: 10.1039/D3LC00312D |
| [36] |
Chen C , Gu Y , Philippe J , Zhang P , Bachman H , Zhang J , et al . Acoustofluidic rotational tweezing enables high-speed contactless morphological phenotyping of zebrafish larvae. Nat Commun 2021; 12: 1118.
doi: 10.1038/s41467-021-21373-3 |
| [37] |
Ozcelik A , Nama N , Huang PH , Kaynak M , McReynolds MR , Hanna-Rose W , et al . Acoustofluidic rotational manipulation of cells and organisms using oscillating solid structures. Small 2016; 12: 5120-5125.
doi: 10.1002/smll.201601760 |
| [38] |
Nyborg L . Acoustic streaming due to attenuated plane waves. The Journal of the Acoustical Society of America 1953; 25: 68-75.
doi: 10.1121/1.1907010 |
| [39] |
Lei J , Hill M , Glynne-Jones P . Numerical simulation of 3D boundary-driven acoustic streaming in microfluidic devices. Lab Chip 2014; 14: 532-41.
doi: 10.1039/C3LC50985K |
| [40] |
Ma T , Yu M , Chen Z , Fei C , Shung K K , Zhou Q . Multi-frequency intravascular ultrasound (IVUS) imaging. IEEE transactions on ultrasonics, ferroelectrics, and frequency control 2015; 62: 97-107.
doi: 10.1109/TUFFC.2014.006679 |
| [41] |
Shekhawat GS , Dravid VP . Nanoscale imaging of buried structures via scanning near-field ultrasound holography. Science 2005; 310: 89-92.
doi: 10.1126/science.1117694 |
| [42] |
Betzig E , Patterson GH , Sougrat R , Lindwasser OW , Olenych S , Bonifacino JS , et al . Imaging intracellular fluorescent proteins at nanometer resolution. Science 2006; 313: 1642-1645.
doi: 10.1126/science.1127344 |
| [43] | Song P , Trzasko J D , Manduca A , Huang R , Kadirvel R , Kallmes D F , et al . Improved super-resolution ultrasound microvessel imaging with spatiotemporal nonlocal means filtering and bipartite graph-based microbubble tracking. IEEE transactions on ultrasonics, ferroelectrics, and frequency control 2017; 65: 149-167 |
| [44] | Dencks S , Lowerison M , Hansen-Shearer J , Shin Y , Schmitz G , Song P , et al. Super-resolution ultrasound: from data acquisition and motion correction to localization, tracking, and evaluation. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 2025. |
| [45] |
Brown J , Christensen-Jeffries K , Harput S , Zhang G , Zhu J , Dunsby C , et al . Investigation of microbubble detection methods for super-resolution imaging of microvasculature. IEEE transactions on ultrasonics, ferroelectrics, and frequency control 2019; 66: 676-691.
doi: 10.1109/TUFFC.2019.2894755 |
| [46] |
Qiang Y , Huang W , Liang W , Liu R , Han X , Pan Y , et al . An adaptive spatiotemporal filter for ultrasound localization microscopy based on density canopy clustering. Ultrasonics 2024; 144: 107446.
doi: 10.1016/j.ultras.2024.107446 |
| [47] | Kang ST , Yeh CK . Ultrasound microbubble contrast agents for diagnostic and therapeutic applications: current status and future design. Chang Gung Med J 2012; 35: 125-139 |
| [48] |
Parthasarathy R . Rapid, accurate particle tracking by calculation of radial symmetry centers. Nat Methods 2012; 9: 724-726.
doi: 10.1038/nmeth.2071 |
| [49] |
Tang S , Song P , Trzasko J D , Lowerison M , Huang C , Gong P , et al . Kalman filter-based microbubble tracking for robust super-resolution ultrasound microvessel imaging. IEEE transactions on ultrasonics, ferroelectrics, and frequency control 2020; 67: 1738-1751.
doi: 10.1109/TUFFC.2020.2984384 |
| [50] |
Yan J , Zhang T , Broughton-Venner J , Huang P , Tang M X . Super-resolution ultrasound through sparsity-based deconvolution and multi-feature tracking. IEEE transactions on medical imaging 2022; 41: 1938-1947.
doi: 10.1109/TMI.2022.3152396 |
| [51] |
Liu X , Zhou T , Lu M , Yang Y , He Q , Luo J . Deep learning for ultrasound localization microscopy. IEEE transactions on medical imaging 2020; 39: 3064-3078.
doi: 10.1109/TMI.2020.2986781 |
| [52] |
Milecki L , Porée J , Belgharbi H , Bourquin C , Damseh R , Delafontaine-Martel P , et al . A deep learning framework for spatiotemporal ultrasound localization microscopy. IEEE Transactions on Medical Imaging 2021; 40: 1428-1437.
doi: 10.1109/TMI.2021.3056951 |
| [53] |
Chen X , Lowerison M R , Dong Z , Sekaran N V C , Llano D A , Song P . Localization free super-resolution microbubble velocimetry using a long short-term memory neural network. IEEE transactions on medical imaging 2023; 42: 2374-2385.
doi: 10.1109/TMI.2023.3251197 |
| [54] |
Shin Y , Lowerison M R , Wang Y , Chen X , You Q , Dong Z , et al . Context-aware deep learning enables high-efficacy localization of high concentration microbubbles for super-resolution ultrasound localization microscopy. Nature communications 2024; 15: 2932.
doi: 10.1038/s41467-024-47154-2 |
| [55] |
Demené C , Robin J , Dizeux A , Heiles B , Pernot M , Tanter M , et al . Transcranial ultrafast ultrasound localization microscopy of brain vasculature in patients. Nature biomedical engineering 2021; 5: 219-228.
doi: 10.1038/s41551-021-00697-x |
| [56] |
Li Z , Qiang Y , Chen D , Hu D , Gao D , Xu X , et al . Dual-modal super-resolution ultrasound and NIR-II fluorescence imaging of ischemic stroke with ICG-doped porous PLGA microspheres. Materials Today Bio 2025; 31: 101513.
doi: 10.1016/j.mtbio.2025.101513 |
| [57] |
Yan J , Huang B , Tonko J , Toulemonde M , Hansen-Shearer J , Tan Q , et al . Transthoracic ultrasound localization microscopy of myocardial vasculature in patients. Nature biomedical engineering 2024; 8: 689-700.
doi: 10.1038/s41551-024-01206-6 |
| [58] |
Demeulenaere O , Sandoval Z , Mateo P , Dizeux A , Villemain O , Gallet R , et al . Coronary flow assessment using 3-dimensional ultrafast ultrasound localization microscopy. JACC Cardiovasc Imaging 2022; 15: 1193-1208.
doi: 10.1016/j.jcmg.2022.02.008 |
| [59] |
Xing P , Perrot V , Dominguez-Vargas AU , Porée J , Quessy S , Dancause N , et al . 3D ultrasound localization microscopy of the nonhuman primate brain. EBioMedicine 2025; 111: 105457.
doi: 10.1016/j.ebiom.2024.105457 |
| [60] | Bell A G . On the production and reproduction of sound by light. American Journal of Science 1880; 3: 305-324 |
| [61] |
Manohar S , Razansky D . Photoacoustics: a historical review. Advances in Optics and Photonics 2016; 8: 586-617.
doi: 10.1364/AOP.8.000586 |
| [62] |
Wang LV , Hu S . Photoacoustic tomography: in vivo imaging from organelles to organs. Science 2012; 335: 1458-1462.
doi: 10.1126/science.1216210 |
| [63] |
Wang LV , Yao J . A practical guide to photoacoustic tomography in the life sciences. Nat Methods 2016; 13: 627-638.
doi: 10.1038/nmeth.3925 |
| [64] | Jiang H . Photoacoustic tomography. CRC press, 2018. |
| [65] |
Zhou Y , Yao J , Wang LV . Tutorial on photoacoustic tomography. J Biomed Opt 2016; 21: 61007.
doi: 10.1117/1.JBO.21.6.061007 |
| [66] |
Chen T , Liu L , Ma X , Zhang Y , Liu H , Zheng R , et al . Dedicated photoacoustic imaging instrument for human periphery blood vessels: a new paradigm for understanding the vascular health. IEEE Trans Biomed Eng 2022; 69: 1093-1100.
doi: 10.1109/TBME.2021.3113764 |
| [67] | Lin L , Xia J , Wong TT , Zhang R , Wang LV . In vivo deep brain imaging of rats using oral-cavity illuminated photoacoustic computed tomography. Proc SPIE 9323, Photons Plus Ultrasound: Imaging and Sensing 2015. San Francisco, California; 2015. 93230G. |
| [68] |
Liu X , Gao R , Chen C , Li X , Yu C , Chen Y , et al . Noninvasive photoacoustic computed tomography/ultrasound imaging to identify high-risk atherosclerotic plaques. Eur J Nucl Med Mol Imaging 2022; 49: 4601-4615.
doi: 10.1007/s00259-022-05911-9 |
| [69] |
Deán-Ben XL , López-Schier H , Razansky D . Optoacoustic micro-tomography at 100 volumes per second. Sci Rep 2017; 7: 6850.
doi: 10.1038/s41598-017-06554-9 |
| [70] |
Li C , Aguirre A , Gamelin J , Maurudis A , Zhu Q , Wang LV . Real-time photoacoustic tomography of cortical hemodynamics in small animals. J Biomed Opt 2010; 15: 010509.
doi: 10.1117/1.3302807 |
| [71] |
Lin L , Hu P , Shi J , Appleton CM , Maslov K , Li L , et al . Single-breath-hold photoacoustic computed tomography of the breast. Nat Commun 2018; 9: 2352.
doi: 10.1038/s41467-018-04576-z |
| [72] | Deán-Ben XL , Fehm TF , Ford SJ , Gottschalk S , Razansky D . Spiral volumetric optoacoustic tomography visualizes multi-scale dynamics in mice. Light Sci Appl 2017; 6: e16247 |
| [73] | Xu, M. H. , Wang, L. V . In 6th conference on biomedical thermoacoustics, optoacoustics, and acousto-optics. 2005:251-254. |
| [74] | Xia J , Chatni MR , Maslov K , Guo Z , Wang K , Anastasio M , et al . Whole-body ring-shaped confocal photoacoustic computed tomography of small animals in vivo. J Biomed Opt 2012; 17: 050506 |
| [75] |
Zhang C , Maslov K , Wang LV . Subwavelength-resolution label-free photoacoustic microscopy of optical absorption in vivo. Opt Lett 2010; 35: 3195-3197.
doi: 10.1364/OL.35.003195 |
| [76] |
Jiang B , Yang X , Liu Y , Deng Y , Luo Q . Multiscale photoacoustic microscopy with continuously tunable resolution. Opt Lett 2014; 39: 3939-3941.
doi: 10.1364/OL.39.003939 |
| [77] |
Hu S , Maslov K , Wang LV . Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed. Opt Lett 2011; 36: 1134-1136.
doi: 10.1364/OL.36.001134 |
| [78] |
Jeon S , Kim J , Lee D , Baik JW , Kim C . Review on practical photoacoustic microscopy. Photoacoustics 2019; 15: 100141.
doi: 10.1016/j.pacs.2019.100141 |
| [79] |
Kim C , Cho EC , Chen J , Song KH , Au L , Favazza C , et al . In vivo molecular photoacoustic tomography of melanomas targeted by bioconjugated gold nanocages. ACS Nano 2010; 4: 4559-4564.
doi: 10.1021/nn100736c |
| [80] |
Ma R , Söntges S , Shoham S , Ntziachristos V , Razansky D . Fast scanning coaxial optoacoustic microscopy. Biomed Opt Express 2012; 3: 1724-1731.
doi: 10.1364/BOE.3.001724 |
| [81] | Wang L , Maslov K , Xing W , Garcia-Uribe A , Wang LV . Video-rate functional photoacoustic microscopy at depths. J Biomed Opt 2012; 17: 106007 |
| [82] |
Yao J , Wang L , Yang JM , Maslov KI , Wong TT , Li L , et al . High-speed label-free functional photoacoustic microscopy of mouse brain in action. Nat Methods 2015; 12: 407-410.
doi: 10.1038/nmeth.3336 |
| [83] | Na S , Russin JJ , Lin L , Yuan X , Hu P , Jann KB , et al . Massively parallel functional photoacoustic computed tomography of the human brain. Nat Biomed Eng 2022; 6: 584-592 |
| [84] |
Liang B , Guo XS , Tu J , Zhang D , Cheng JC . An acoustic rectifier. Nat Mater 2010; 9: 989-992.
doi: 10.1038/nmat2881 |
| [85] |
Cheng Y , Zhou C , Yuan BG , Wu DJ , Wei Q , Liu XJ . Ultra-sparse metasurface for high reflection of low-frequency sound based on artificial Mie resonances. Nat Mater 2015; 14: 1013-1019.
doi: 10.1038/nmat4393 |
| [86] |
Liu T , Zhu X , Chen F , Liang S , Zhu J . Unidirectional wave vector manipulation in two-dimensional space with an all passive acoustic parity-time-symmetric metamaterials crystal. Phys Rev Lett 2018; 120: 124502.
doi: 10.1103/PhysRevLett.120.124502 |
| [87] |
Liu Z , Zhang X , Mao Y , Zhu YY , Yang Z , Chan CT , et al . Locally resonant sonic materials. Science 2000; 289: 1734-1736.
doi: 10.1126/science.289.5485.1734 |
| [88] |
Bouchet D , Stephan O , Dollet B , Marmottant P , Bossy E . Near-field acoustic imaging with a caged bubble. Nat Commun 2024; 15: 10275.
doi: 10.1038/s41467-024-54693-1 |
| [89] |
He J , Jiang X , Zhang C , Li Y , Liu C , Liu X , et al . Stretchable ultrasound metalens for biomedical zoom imaging and bone quality assessment with subwavelength resolution. Small 2024; 20: e2312221.
doi: 10.1002/smll.202312221 |
| [90] |
Li ZL , Chen K , Li F , Shi ZJ , Sun QL , Li PQ , et al . Decorated bacteria-cellulose ultrasonic metasurface. Nat Commun 2023; 14: 5319.
doi: 10.1038/s41467-023-41172-2 |
| [91] |
Yan M , Lu J , Li F , Deng W , Huang X , Ma J , et al . On-chip valley topological materials for elastic wave manipulation. Nat Mater 2018; 17: 993-998.
doi: 10.1038/s41563-018-0191-5 |
| [92] |
Wang W , Baranski M , Jin Y , Salut R , Belharet D , Friedt JM , et al . Experimental realization of on-chip surface acoustic wave metasurfaces at sub-GHz. Adv Sci (Weinh) 2025; 12: e2411825.
doi: 10.1002/advs.202411825 |
| [93] |
Heiles B , Chavignon A , Hingot V , Lopez P , Teston E , Couture O . Performance benchmarking of microbubble-localization algorithms for ultrasound localization microscopy. Nat Biomed Eng 2022; 6: 605-616.
doi: 10.1038/s41551-021-00824-8 |
| [94] |
Meng L , Liu X , Wang Y , Zhang W , Zhou W , Cai F , et al . Sonoporation of cells by a parallel stable cavitation microbubble array. Adv Sci (Weinh) 2019; 6: 1900557.
doi: 10.1002/advs.201900557 |
| [95] | Zhao, Z. F. , Zhang, W. J. , Niu, L. L. , Meng, L . & Zheng, H. R . Microbubble oscillation induced acoustic micromixing in microfluidic device. Acta Physica Sinica 2018;67. |
| [96] |
Lo WC , Fan CH , Ho YJ , Lin CW , Yeh CK . Tornado-inspired acoustic vortex tweezer for trapping and manipulating microbubbles. Proc Natl Acad Sci U S A 2021; 118: e2023188118.
doi: 10.1073/pnas.2023188118 |
| [97] |
Hanmin Peng , Xuejun Qian , Linli Mao , Laiming Jiang , Yizhe Sun , Qifa Zhou . Ultrafast ultrasound imaging in acoustic microbubble trapping. Appl Phys Lett 2019; 115: 203701.
doi: 10.1063/1.5124437 |
| [98] | Melde, K ., Athanassiadis, A. G ., Missirlis, D , Minghui Shi , Seneca, S ., Fischer, P . Ultrasound-assisted tissue engineering. Nat Rev Bioeng 2024; 2: 486-500 |
| [99] |
Xie Y , Nama N , Li P , Mao Z , Huang PH , Zhao C , et al . Probing cell deformability via acoustically actuated bubbles. Small 2016; 12: 902-910.
doi: 10.1002/smll.201502220 |
| [100] |
Lu Y , Tan W , Mu S , Zhu G . Vortex-enhanced microfluidic chip for efficient mixing and particle capturing combining acoustics with inertia. Anal Chem 2024; 96: 3859-3869.
doi: 10.1021/acs.analchem.3c05291 |
| [101] |
Wu JR . Acoustical tweezers. J Acoust Soc Am 1991; 89: 2140-2143.
doi: 10.1121/1.400907 |
| [102] |
Yang Y , Yang Y , Liu D , Wang Y , Lu M , Zhang Q , et al . In-vivo programmable acoustic manipulation of genetically engineered bacteria. Nat Commun 2023; 14: 3297.
doi: 10.1038/s41467-023-38814-w |
| [103] |
Kaiyue W , Wei Z , Zhengrong L , Feiyan C , Fei L , Junru W , et al . Sorting of tumour cells in a microfluidic device by multi-stage surface acoustic waves. Sensors and Actuators B: Chemical 2018; 258: 1174-1183.
doi: 10.1016/j.snb.2017.12.013 |
| [104] |
Yang S , Tian Z , Wang Z , Rufo J , Li P , Mai J , et al . Harmonic acoustics for dynamic and selective particle manipulation. Nat Mater 2022; 21: 540-546.
doi: 10.1038/s41563-022-01210-8 |
| [105] |
Melde K , Kremer H , Shi M , Seneca S , Frey C , Platzman I , et al . Compact holographic sound fields enable rapid one-step assembly of matter in 3D. Sci Adv 2023; 9: eadf6182.
doi: 10.1126/sciadv.adf6182 |
| [106] |
Meng L , Cai F , Zhang Z , Niu L , Jin Q , Yan F , et al . Transportation of single cell and microbubbles by phase-shift introduced to standing leaky surface acoustic waves. Biomicrofluidics 2011; 5: 44104-4410410.
doi: 10.1063/1.3652872 |
| [107] |
Long M , Xiaoyu C , Chenyu D , Xiufang L , Wei Z , Wenjun Z , Xinhui W , et al . Microbubble enhanced acoustic tweezers for size-independent cell sorting. Applied Physics Letters 2020; 116: 073701.
doi: 10.1063/1.5123544 |
| [108] |
Xu K , Clark CP , Poe BL , Lounsbury JA , Nilsson J , Laurell T , et al . Isolation of a low number of sperm cells from female DNA in a glass-pdms-glass microchip via bead-assisted acoustic differential extraction. Anal Chem 2019; 91: 2186-2191.
doi: 10.1021/acs.analchem.8b04752 |
| [109] |
Gai J , Nosrati R , Neild A . High DNA integrity sperm selection using surface acoustic waves. Lab Chip 2020; 20: 4262-4272.
doi: 10.1039/D0LC00457J |
| [110] |
Gai J , Dervisevic E , Devendran C , Cadarso VJ , O'Bryan MK , Nosrati R , et al . High-frequency ultrasound boosts bull and human sperm motility. Adv Sci (Weinh) 2022; 9: e2104362.
doi: 10.1002/advs.202104362 |
| [111] |
Vafaie A , Raveshi MR , Devendran C , Nosrati R , Neild A . Making immotile sperm motile using high-frequency ultrasound. Sci Adv 2024; 10: eadk2864.
doi: 10.1126/sciadv.adk2864 |
| [112] |
Zhang C , Rong N , Lin Z , Li PQ , Shi J , Zhou W , et al . Acoustic enrichment of sperm for in vitro fertilization. Lab Chip 2024; 24: 5113-5123.
doi: 10.1039/D4LC00604F |
| [113] |
Baudoin M , Thomas JL , Sahely RA , Gerbedoen JC , Gong Z , Sivery A , et al . Spatially selective manipulation of cells with single-beam acoustical tweezers. Nat Commun 2020; 11: 4244.
doi: 10.1038/s41467-020-18000-y |
| [114] | Novotny J , Lenshof A , Laurell T . Acoustofluidic platforms for particle manipulation. Electrophoresis 2022; 43: 804-818 |
| [115] |
Peng Qi L , Zong Lin L , Wei Z , Shengwu W , Long M , Yu-Gui P , et al . Generating multistructured ultrasound via bioinspired metaskin patterning for low-threshold and contactless control of living organisms. Adv Funct Mater 2022; 32: 2203109.
doi: 10.1002/adfm.202203109 |
| [116] |
Zhao S , Tian Z , Shen C , Yang S , Xia J , Li T , et al . Topological acoustofluidics. Nat Mater 2025; 24: 707-715.
doi: 10.1038/s41563-025-02169-y |
| [117] |
Melde K , Mark AG , Qiu T , Fischer P . Holograms for acoustics. Nature 2016; 537: 518-522.
doi: 10.1038/nature19755 |
| [118] |
Ma Z , Holle AW , Melde K , Qiu T , Poeppel K , Kadiri VM , et al . Acoustic holographic cell patterning in a biocompatible hydrogel. Adv Mater 2020; 32: e1904181.
doi: 10.1002/adma.201904181 |
| [119] |
Peng qi L , Wei Z , Benxian P , Chunqiu Z , Xue Feng Z , Long M , et al . Holographic surface-acoustic-wave tweezers for functional manipulation of solid or liquid objects. Physical Review Applied 2023; 20: 064003.
doi: 10.1103/PhysRevApplied.20.064003 |
| [120] | Link A , Franke T . Acoustic erythrocytometer for mechanically probing cell viscoelasticity. Lab Chip 2022; 20: 1991-1998 |
| [121] |
Zeng Y , Hao J , Zhang J , Jiang L , Youn S , Lu G , et al . Manipulation and mechanical deformation of leukemia cells by high-frequency ultrasound single beam. IEEE Trans Ultrason Ferroelectr Freq Control 2022; 69: 1889-1897.
doi: 10.1109/TUFFC.2022.3170074 |
| [122] |
Shen L , Tian Z , Yang K , Rich J , Xia J , Upreti N , et al . Joint subarray acoustic tweezers enable controllable cell translation, rotation, and deformation. Nat Commun 2024; 15: 9059.
doi: 10.1038/s41467-024-52686-8 |
| [123] |
Zhou W , Li Y , Liu Y , Quan H , Li P , Li F , et al . An acoustic squeezer for assessment of multiparameter cell mechanical properties. Ultrasonics 2025; 151: 107622.
doi: 10.1016/j.ultras.2025.107622 |
| [124] |
Liu X , Rong N , Tian Z , Rich J , Niu L , Li P , et al . Acoustothermal transfection for cell therapy. Sci Adv 2024; 10: eadk1855.
doi: 10.1126/sciadv.adk1855 |
| [125] |
Fechheimer M , Boylan JF , Parker S , Sisken JE , Patel GL , Zimmer SG . Transfection of mammalian cells with plasmid DNA by scrape loading and sonication loading. Proc Natl Acad Sci U S A 1987; 84: 8463-8467.
doi: 10.1073/pnas.84.23.8463 |
| [126] |
Guo X , Cai C , Xu G , Yang Y , Tu J , Huang P , Zhang D . Interaction between cavitation microbubble and cell: A simulation of sonoporation using boundary element method (BEM). Ultrason Sonochem 2017; 39: 863-871.
doi: 10.1016/j.ultsonch.2017.06.016 |
| [127] |
Ilovitsh T , Feng Y , Foiret J , Kheirolomoom A , Zhang H , Ingham ES , et al . Low-frequency ultrasound-mediated cytokine transfection enhances T cell recruitment at local and distant tumor sites. Proc Natl Acad Sci U S A 2020; 117: 12674-12685.
doi: 10.1073/pnas.1914906117 |
| [128] |
Gorick CM , Mathew AS , Garrison WJ , Thim EA , Fisher DG , Copeland CA , et al . Sonoselective transfection of cerebral vasculature without blood-brain barrier disruption. Proc Natl Acad Sci U S A 2020; 117: 5644-5654.
doi: 10.1073/pnas.1914595117 |
| [129] |
Duan X , Lo SY , Lee JCY , Wan JMF , Yu ACH . Sonoporation of immune cells: heterogeneous impact on lymphocytes, monocytes and granulocytes. Ultrasound Med Biol 2022; 48: 1268-1281.
doi: 10.1016/j.ultrasmedbio.2022.02.022 |
| [130] | Ohl C D , Arora M , Ikink R , De Jong N , Versluis M , Delius M , et al . Sonoporation from jetting cavitation bubbles. Biophysical journal 2006; 91: 4285-4295 |
| [131] |
Belling JN , Heidenreich LK , Tian Z , Mendoza AM , Chiou TT , Gong Y , et al . Acoustofluidic sonoporation for gene delivery to human hematopoietic stem and progenitor cells. Proc Natl Acad Sci U S A 2020; 117: 10976-10982.
doi: 10.1073/pnas.1917125117 |
| [132] |
Ramesan S , Rezk AR , Dekiwadia C , Cortez-Jugo C , Yeo LY . Acoustically-mediated intracellular delivery. Nanoscale 2018; 10: 13165-13178.
doi: 10.1039/C8NR02898B |
| [133] |
Ramesan S , Rezk AR , Cevaal PM , Cortez-Jugo C , Symons J , Yeo LY . Acoustofection: high-frequency vibrational membrane permeabilization for intracellular siRNA delivery into nonadherent cells. ACS Appl Bio Mater 2021; 4: 2781-2789.
doi: 10.1021/acsabm.1c00003 |
| [134] |
Karki A , Giddings E , Carreras A , Champagne D , Fortner K , Rincon M , et al . Sonoporation as an Approach for siRNA delivery into T cells. Ultrasound Med Biol 2019; 45: 3222-3231.
doi: 10.1016/j.ultrasmedbio.2019.06.406 |
| [135] |
Liu X , Zhang W , Farooq U , Rong N , Shi J , Pang N , et al . Rapid cell pairing and fusion based on oscillating bubbles within an acoustofluidic device. Lab Chip 2022; 22: 921-927.
doi: 10.1039/D1LC01074C |
| [136] |
Zheng H , Cai F , Yan F , et al . Multi-functional biomedical ultrasound: imaging, manipulation, neuromodulation and therapy. Chinese Science Bulletin 2015; 60: 1864.
doi: 10.1360/N972015-00038 |
| [137] |
Ibsen S , Tong A , Schutt C , Esener S , Chalasani SH . Sonogenetics is a non-invasive approach to activating neurons in Caenorhabditis elegans. Nat Commun 2015; 6: 8264.
doi: 10.1038/ncomms9264 |
| [138] |
Zou J , Chen H , Chen X , Lin Z , Yang Q , Tie C , et al . Noninvasive closed-loop acoustic brain-computer interface for seizure control. Theranostics 2024; 14: 5965-5981.
doi: 10.7150/thno.99820 |
| [139] |
Qiu Z , Guo J , Kala S , Zhu J , Xian Q , Qiu W , et al . The mechanosensitive ion channel piezo1 significantly mediates in vitro ultrasonic stimulation of neurons. iScience 2019; 21: 448-457.
doi: 10.1016/j.isci.2019.10.037 |
| [140] |
Griggs WS , Norman SL , Deffieux T , Segura F , Osmanski BF , Chau G , et al . Decoding motor plans using a closed-loop ultrasonic brain-machine interface. Nat Neurosci 2024; 27: 196-207.
doi: 10.1038/s41593-023-01500-7 |
| No related articles found! |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Share: WeChat
Copyright ©2018 Advanced Ultrasound in Diagnosis and Therapy
|
Advanced Ultrasound in Diagnosis and Therapy (AUDT) a>
is licensed under a Creative Commons Attribution 4.0 International License a>.
