Advanced Ultrasound in Diagnosis and Therapy ›› 2025, Vol. 9 ›› Issue (4): 449-456.doi: 10.26599/AUDT.2025.250095
Previous Articles Next Articles
Li Yanrana, Cui Yuanjiea, Wu Qingqinga,*(
), Zhang Naa,*(
)
Received:2025-09-07
Revised:2025-09-14
Accepted:2025-10-02
Online:2025-12-30
Published:2025-11-06
Contact:
Department of Ultrasound, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, No.251 Yaojiayuan Road, Chaoyang District, Beijing, 100026, China (Qingqing Wua, Na Zhang)e-mail: qingqingwu@ccmu.edu.cn (QQ W);nana8022@ccmu.edu.cn (N Z),
Li Yanran, Cui Yuanjie, Wu Qingqing, Zhang Na. Current Applications of Artificial Intelligence in Obstetric Ultrasound. Advanced Ultrasound in Diagnosis and Therapy, 2025, 9(4): 449-456.
| [1] |
Xun SY , Ke W , Jiang MF , Chen HC , Chen HM , Lam CT , et al . Current status, prospect and bottleneck of ultrasound AI development: a systemic review. Advanced Ultrasound in Diagnosis and Therapy 2023; 7: 61-72.
doi: 10.37015/AUDT.2023.230020 |
| [2] |
Ghelich Oghli M , Shabanzadeh A , Moradi S , Sirjani N , Gerami R , Ghaderi P , et al . Automatic fetal biometry prediction using a novel deep convolutional network architecture. Phys Med 2021; 88: 127-137.
doi: 10.1016/j.ejmp.2021.06.020 |
| [3] |
Ashkani Chenarlogh V , Ghelich Oghli M , Shabanzadeh A , Sirjani N , Akhavan A , Shiri I , et al . Fast and accurate u-net model for fetal ultrasound image segmentation. Ultrason Imaging 2022; 44: 25-38.
doi: 10.1177/01617346211069882 |
| [4] |
Dubey G , Srivastava S , Jayswal AK , Saraswat M , Singh P , Memoria M . Fetal ultrasound segmentation and measurements using appearance and shape prior based density regression with deep CNN and robust ellipse fitting. J Imaging Inform Med 2024; 37: 247-267.
doi: 10.1007/s10278-023-00908-8 |
| [5] |
Burgos-Artizzu XP , Coronado-Gutiérrez D , Valenzuela-Alcaraz B , Vellvé K , Eixarch E , Crispi F , et al . Analysis of maturation features in fetal brain ultrasound via artificial intelligence for the estimation of gestational age. Am J Obstet Gynecol MFM 2021; 3: 100462.
doi: 10.1016/j.ajogmf.2021.100462 |
| [6] |
Guo WJ , Li SL , Yu X , Wen HX , Yuan Y , Yang X . Artificial intelligence in prenatal ultrasound: clinical application and prospect. Advanced Ultrasound in Diagnosis and Therapy 2023; 7: 82-90.
doi: 10.37015/AUDT.2023.230024 |
| [7] | Płotka S , Klasa A , Lisowska A , Seliga-Siwecka J , Lipa M , Trzciński T , et al . Deep learning fetal ultrasound video model match human observers in biometric measurements. Phys Med Biol 2022; 67: 10 |
| [8] |
Lee LH , Bradburn E , Craik R , Yaqub M , Norris SA , Ismail LC , et al . Machine learning for accurate estimation of fetal gestational age based on ultrasound images. NPJ Digit Med 2023; 6: 36.
doi: 10.1038/s41746-023-00774-2 |
| [9] |
Patel N , O'Brien J , Bunn R , Schanbacher B , Bauer J , Lam GK . Perinatal artificial intelligence in ultrasound (PAIR) study: predicting delivery timing. J Matern Fetal Neonatal Med 2025; 38: 2532099.
doi: 10.1080/14767058.2025.2532099 |
| [10] |
Xia TH , Tan M , Li JH , Wang JJ , Wu QQ , Kong DX . Establish a normal fetal lung gestational age grading model and explore the potential value of deep learning algorithms in fetal lung maturity evaluation. Chin Med J (Engl) 2021; 134: 1828-1837.
doi: 10.1097/CM9.0000000000001547 |
| [11] |
Palacio M , Bonet-Carne E , Cobo T , Perez-Moreno A , Sabrià J , Richter J , et al . Prediction of neonatal respiratory morbidity by quantitative ultrasound lung texture analysis: a multicenter study. Am J Obstet Gynecol 2017; 217: 196.e1-14.
doi: 10.1016/j.ajog.2017.03.016 |
| [12] |
Zamarian ACP , Caetano ACR , Grohmann RM , Mazzola JB , Milani HJF , Passos JP , et al . Prediction of lung maturity in fetuses with growth restriction through quantitative ultrasound analysis. Ultrasound Med Biol 2022; 48: 20-26.
doi: 10.1016/j.ultrasmedbio.2021.08.020 |
| [13] |
Rabachini Caetano AC , Machado Nardozza LM , Perez Zamarian AC , Silva Drumond LG , Chiaratti de Oliveira A , Dualib PM , et al . Prediction of lung maturity through quantitative ultrasound analysis of fetal lung texture in women with diabetes during pregnancy. J Perinat Med 2023; 51: 913-919.
doi: 10.1515/jpm-2023-0009 |
| [14] |
Du Y , Fang Z , Jiao J , Xi G , Zhu C , Ren Y , et al . Application of ultrasound-based radiomics technology in fetal-lung-texture analysis in pregnancies complicated by gestational diabetes and/or pre-eclampsia. Ultrasound Obstet Gynecol 2021; 57: 804-812.
doi: 10.1002/uog.22037 |
| [15] |
Moreno-Espinosa AL , Hawkins-Villarreal A , Burgos-Artizzu XP , Coronado-Gutierrez D , Castelazo S , Lip-Sosa DL , et al . Concordance of the risk of neonatal respiratory morbidity assessed by quantitative ultrasound lung texture analysis in fetuses of twin pregnancies. Sci Rep 2022; 12: 9016.
doi: 10.1038/s41598-022-13047-x |
| [16] |
Flosi FB , da Silva FC , de Jesús GR , Velarde LGC , de Sá RAM . Assessment of fetal lung maturity using quantitative ultrasound analysis in patients with prelabor rupture of membranes. Fetal Diagn Ther 2020; 47: 636-641.
doi: 10.1159/000507550 |
| [17] |
Hesse LS , Aliasi M , Moser F , INTERGROWTH-21(st) Consortium; Haak MC , Xie W , et al . Subcortical segmentation of the fetal brain in 3D ultrasound using deep learning. Neuroimage 2022; 254: 119117.
doi: 10.1016/j.neuroimage.2022.119117 |
| [18] |
Chen X , He M , Dan T , Wang N , Lin M , Zhang L , et al . Automatic measurements of fetal lateral ventricles in 2d ultrasound images using deep learning. Front Neurol 2020; 11: 526.
doi: 10.3389/fneur.2020.00526 |
| [19] |
Xie HN , Wang N , He M , Zhang LH , Cai HM , Xian JB , et al . Using deep-learning algorithms to classify fetal brain ultrasound images as normal or abnormal. Ultrasound Obstet Gynecol 2020; 56: 579-587.
doi: 10.1002/uog.21967 |
| [20] |
Xie B , Lei T , Wang N , Cai H , Xian J , He M , et al . Computer-aided diagnosis for fetal brain ultrasound images using deep convolutional neural networks. Int J Comput Assist Radiol Surg 2020; 15: 1303-1312.
doi: 10.1007/s11548-020-02182-3 |
| [21] |
Lin M , He X , Guo H , He M , Zhang L , Xian J , et al . Use of real-time artificial intelligence in detection of abnormal image patterns in standard sonographic reference planes in screening for fetal intracranial malformations. Ultrasound Obstet Gynecol 2022; 59: 304-316.
doi: 10.1002/uog.24843 |
| [22] |
Herling L , Johnson J , Ferm-Widlund K , Zamprakou A , Westgren M , Acharya G . Automated quantitative evaluation of fetal atrioventricular annular plane systolic excursion. Ultrasound Obstet Gynecol 2021; 58: 853-863.
doi: 10.1002/uog.23703 |
| [23] |
Qiao S , Pan S , Luo G , Pang S , Chen T , Singh AK , et al . A pseudo-siamese feature fusion generative adversarial network for synthesizing high-quality fetal four-chamber views. IEEE J Biomed Health Inform 2023; 27: 1193-1204.
doi: 10.1109/JBHI.2022.3143319 |
| [24] |
Ma M , Li Y , Chen R , Huang C , Mao Y , Zhao B . Diagnostic performance of fetal intelligent navigation echocardiography (FINE) in fetuses with double-outlet right ventricle (DORV). Int J Cardiovasc Imaging 2020; 36: 2165-2172.
doi: 10.1007/s10554-020-01932-3 |
| [25] | Huang C , Zhao BW , Chen R , Pang HS , Pan M , Peng XH , et al. Is Fetal intelligent navigation echocardiography helpful in screening for d-transposition of the great arteries? J Ultrasound Med 2020; 39:775-784. |
| [26] |
Sakai A , Komatsu M , Komatsu R , Matsuoka R , Yasutomi S , Dozen A , et al . Medical professional enhancement using explainable artificial intelligence in fetal cardiac ultrasound screening. Biomedicines 2022; 10: 551.
doi: 10.3390/biomedicines10030551 |
| [27] |
Arnaout R , Curran L , Zhao Y , Levine JC , Chinn E , Moon-Grady AJ . An ensemble of neural networks provides expert-level prenatal detection of complex congenital heart disease. Nat Med 2021; 27: 882-891.
doi: 10.1038/s41591-021-01342-5 |
| [28] |
Ungureanu A , Marcu AS , Patru CL , Ruican D , Nagy R , Stoean R , et al . Learning deep architectures for the interpretation of first-trimester fetal echocardiography (LIFE) - a study protocol for developing an automated intelligent decision support system for early fetal echocardiography. BMC Pregnancy Childbirth 2023; 23: 20.
doi: 10.1186/s12884-022-05204-x |
| [29] |
Torrents-Barrena J , Monill N , Piella G , Gratacós E , Eixarch E , Ceresa M , et al . Assessment of radiomics and deep learning for the segmentation of fetal and maternal anatomy in magnetic resonance imaging and ultrasound. Acad Radiol 2021; 28: 173-188.
doi: 10.1016/j.acra.2019.11.006 |
| [30] |
Schilpzand M , Neff C , van Dillen J , van Ginneken B , Heskes T , de Korte C , et al . Automatic placenta localization from ultrasound imaging in a resource-limited setting using a predefined ultrasound acquisition protocol and deep learning. Ultrasound Med Biol 2022; 48: 663-674.
doi: 10.1016/j.ultrasmedbio.2021.12.006 |
| [31] |
Gupta K , Balyan K , Lamba B , Puri M , Sengupta D , Kumar M . Ultrasound placental image texture analysis using artificial intelligence to predict hypertension in pregnancy. J Matern Fetal Neonatal Med 2022; 35: 5587-5594.
doi: 10.1080/14767058.2021.1887847 |
| [32] |
Miyagi Y , Hata T , Bouno S , Koyanagi A , Miyake T . Recognition of facial expression of fetuses by artificial intelligence (AI). J Perinat Med 2021; 49: 596-603.
doi: 10.1515/jpm-2020-0537 |
| [33] |
Smail LC , Dhindsa K , Braga LH , Becker S , Sonnadara RR . Using deep learning algorithms to grade hydronephrosis severity: toward a clinical adjunct. Front Pediatr 2020; 8: 1.
doi: 10.3389/fped.2020.00001 |
| [34] |
Weerasinghe NH , Lovell NH , Welsh AW , Stevenson GN . Multi-parametric fusion of 3D power doppler ultrasound for fetal kidney segmentation using fully convolutional neural networks. IEEE J Biomed Health Inform 2021; 25: 2050-2027.
doi: 10.1109/JBHI.2020.3027318 |
| [35] |
Shozu K , Komatsu M , Sakai A , Komatsu R , Dozen A , Machino H , et al . Model-agnostic method for thoracic wall segmentation in fetal ultrasound videos. Biomolecules 2020; 10: 1691.
doi: 10.3390/biom10121691 |
| [36] |
Cho HC , Sun S , Min Hyun C , Kwon JY , Kim B , Park Y , et al . Automated ultrasound assessment of amniotic fluid index using deep learning. Med Image Anal 2021; 69: 101951.
doi: 10.1016/j.media.2020.101951 |
| [37] |
Calhoun BC , Uselman H , Olle EW . Development of artificial intelligence image classification models for determination of umbilical cord vascular anomalies. J Ultrasound Med 2024; 43: 881-897.
doi: 10.1002/jum.16418 |
| [38] |
Lei T , Zheng Q , Feng J , Zhang L , Zhou Q , He M , et al . Enhancing trainee performance in obstetric ultrasound through an artificial intelligence system: randomized controlled trial. Ultrasound Obstet Gynecol 2024; 64: 453-462.
doi: 10.1002/uog.29101 |
| [39] |
Ramirez Zegarra R , Conversano F , Dall'Asta A , Giovanna Di Trani M , Fieni S , Morello R , et al . A deep learning approach to identify the fetal head position using transperineal ultrasound during labor. Eur J Obstet Gynecol Reprod Biol 2024; 301: 147-153.
doi: 10.1016/j.ejogrb.2024.08.012 |
| [40] |
Chen RD , Wang XQ , Liang P , Ouyang XP , Kong DX . Intelligent ultrasonic diagnosis and clinical application: technical development and prospectives. Advanced Ultrasound in Diagnosis and Therapy 2023; 7: 73-81.
doi: 10.37015/AUDT.2023.230019 |
| [41] |
Burgos-Artizzu XP , Coronado-Gutiérrez D , Valenzuela-Alcaraz B , Bonet-Carne E , Eixarch E , Crispi F , et al . Evaluation of deep convolutional neural networks for automatic classification of common maternal fetal ultrasound planes. Sci Rep 2020; 10: 10200.
doi: 10.1038/s41598-020-67076-5 |
| [42] | Ramirez Zegarra R , Ghi T . Use of artificial intelligence and deep learning in fetal ultrasound imaging. Ultrasound Obstet Gynecol 2023; 62: 185-194 |
| [1] | Hu Xuelin, Zhu Ye, Zhang Zisang, Quan Yuanting, Chen Wenwen, Chen Leichong, Xu Guangyu, Qin Luning, Xie Mingxing, Zhang Li. Explainable Artificial Intelligence in Echocardiography [J]. Advanced Ultrasound in Diagnosis and Therapy, 2025, 9(4): 409-425. |
| [2] | Yu Xiao jie, Song Zheng lai, Chang Xue yong, Yu Jie, Liang Ping. Artificial Intelligence in Ultrasound Diagnosis of Liver Nodules: A Comprehensive Review of B-Mode and Contrast-enhanced Applications [J]. Advanced Ultrasound in Diagnosis and Therapy, 2025, 9(4): 326-346. |
| [3] | Zhong Xian, Xie Xiaoyan. Multimodal Ultrasound Radiomics in Liver Disease: Current Status and Future Directions [J]. Advanced Ultrasound in Diagnosis and Therapy, 2025, 9(4): 388-408. |
| [4] | Zhang Xiaoqian, Zhang Jingwen, Dong Yijie, Zhou Jianqiao. Research Progress and Clinical Translation of Photoacoustic–ultrasound Fusion Imaging in Breast Cancer Diagnosis and Therapy [J]. Advanced Ultrasound in Diagnosis and Therapy, 2025, 9(4): 467-482. |
| [5] | Jin Tong, Yu Xiaohu, Ai Zheng, Guo Hongcheng. Artificial Intelligence in Ultrasound Imaging: A Review of Progress from Machine Learning to Large Language Model [J]. Advanced Ultrasound in Diagnosis and Therapy, 2025, 9(4): 483-496. |
| [6] | Zheng Hairong, Meng Long, Li Fei, Niu Lili, Qiu Weibao, Ma Teng, Liu Chengbo, Zhu Xuefeng, Wan Liwen, Cai Feiyan. Advance in Ultrasound Super-resolution Imaging, Cell Manipulation and Inter-brain Communication [J]. Advanced Ultrasound in Diagnosis and Therapy, 2025, 9(4): 307-325. |
| [7] | Elkouahy Fatima Ezzahra, Bennis Ahmed, Merke Nicolas, Ouahid Hajar, Malali Hamid El, Taleb Lhoucine Ben, Mouhsen Azeddine. Advanced Diagnosis of Aortic Stenosis Disease Based on Ultrasound Images: A Novel Artificial Intelligence Approach [J]. Advanced Ultrasound in Diagnosis and Therapy, 2025, 9(3): 298-306. |
| [8] | Mohammed Amr, Tahmasebi Aylin, Kim Sooji, Alnoury Mostafa, E. Wessner Corinne, Siu Xiao Tania, W. Gould Sharon, A. May Lauren, Kecskemethy Heidi, T. Saul David, R. Eisenbrey John. Evaluation of Liver Fibrosis on Grayscale Ultrasound in a Pediatric Population Using a Cloud-based Transfer Learning Artificial Intelligence Platform [J]. Advanced Ultrasound in Diagnosis and Therapy, 2024, 8(4): 242-249. |
| [9] | Xu Jiale, Xia Shujun, Hua Qing, Mei Zihan, Hou Yiqing, Wei Minyan, Lai Limei, Yang Yixuan, Zhou Jianqiao. Performance of ChatGPT and Radiology Residents on Ultrasonography Board-Style Questions [J]. Advanced Ultrasound in Diagnosis and Therapy, 2024, 8(4): 250-254. |
| [10] | Yuhang Zheng, BS, Jianqiao Zhou, MD. Deep Learning in Ultrasound Localization Microscopy [J]. Advanced Ultrasound in Diagnosis and Therapy, 2024, 8(3): 86-92. |
| [11] | Raymond Sutjiadi, MS, Siti Sendari, PhD, Heru Wahyu Herwanto, PhD, Yosi Kristian, PhD. Deep Learning for Segmentation and Classification in Mammograms for Breast Cancer Detection: A Systematic Literature Review [J]. Advanced Ultrasound in Diagnosis and Therapy, 2024, 8(3): 94-105. |
| [12] | Yang Qi, MD, Dengsheng Sun, MD, Linyao Wang, MD, Jie Yu, MD, Ping Liang, MD. State-of-the-Art and Development Trend of Interventional Ultrasound in China [J]. Advanced Ultrasound in Diagnosis and Therapy, 2023, 7(4): 313-320. |
| [13] | Huihui Chai, MS, Xiaowan Bo, MD, Lehang Guo, MD, Chengzhong Peng, MD. Experience and Enlightenment of Handheld Ultrasound Applications in Multiple Scenarios Based on 5G Technology [J]. Advanced Ultrasound in Diagnosis and Therapy, 2023, 7(4): 356-365. |
| [14] | V. Merin Shobi, MCA, MPhil , ME, F. Ramesh Dhanaseelan, MSc, MTech , PhD. Review on Image Inpainting using Intelligence Mining Techniques [J]. Advanced Ultrasound in Diagnosis and Therapy, 2023, 7(4): 366-372. |
| [15] | Wenwen Chen, BS, Yuji Xie, MD, Zisang Zhang, MD, Ye Zhu, MS, Yiwei Zhang, MD, Shuangshuang Zhu, MD, PhD, Chun Wu, MD, PhD, Ziming Zhang, MD, Xin Yang, PhD, Man wei Liu, MD, PhD, Mingxing Xie, MD, PhD, Li Zhang, MD, PhD. Artificial Intelligence-assisted Medical Imaging in Interventional Management of Valvular Heart Disease [J]. Advanced Ultrasound in Diagnosis and Therapy, 2023, 7(3): 217-227. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Share: WeChat
Copyright ©2018 Advanced Ultrasound in Diagnosis and Therapy
|
Advanced Ultrasound in Diagnosis and Therapy (AUDT) a>
is licensed under a Creative Commons Attribution 4.0 International License a>.
