Advanced Ultrasound in Diagnosis and Therapy ›› 2025, Vol. 9 ›› Issue (4): 437-448.doi: 10.26599/AUDT.2025.250093
Previous Articles Next Articles
Hou Shilina, Bao Guocuia, Sun Zhec, Li Guob,*(
), Zhang Boc,*(
), Dai Jiyana,*(
)
Received:2025-09-25
Revised:2025-10-04
Accepted:2025-10-15
Online:2025-12-30
Published:2025-11-06
Contact:
School of Automation, Xi’an University of Posts & Telecommunications, Xi’an, China (Li Guo), e-mail: liguo@xupt.edu.cn (G L);Department of Ultrasound, China-Japan Friendship Hospital, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine of Chinese Academy of Medical Sciences, China (Bo Zhang), e-mail: thyroidus@163.com (B Z);Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, China (Jiyan Dai), e-mail: jiyan.dai@polyu.edu.hk (JY D).,
Hou Shilin, Bao Guocui, Sun Zhe, Li Guo, Zhang Bo, Dai Jiyan. Volumetric Imaging with 2D Array Ultrasound Transducers for Clinical Applications: A Review. Advanced Ultrasound in Diagnosis and Therapy, 2025, 9(4): 437-448.
Table 1
The comparison between fully-sampled 2D matrix array and RCA array"
| Feature | 2D matrix arrays | Row-coloumn array (RCA) |
| Channel count | Hign (M×N) | Low (M+N) |
| Beamforming flexibility | Excellent (full electronic steering) | Limited (sequential scanning) |
| Imaging quality | High resolution, low artifacts | Lower contrast, more side lobes |
| Fabrication complexity | High (dense interconnect) | Lower (simple routing) |
| cost | Expensive | Affordable |
| Power consumption | High | Moderate |
| Clinical applications | Cardiology, advanced 4D imaging | High-frequency, portable systems |
| Max theoretical FR | 30-50 VPS | 770 VPS [ |
| Practical clinical FR | 10-20 VPS | Not mentioned |
| Doppler performance | Superior | Challenging |
| Motion artifacts | Low | Higher risk |
| [1] |
Devarakonda SB , Myers MR , Lanier M , Dumoulin C , Banerjee RK . Assessment of gold nanoparticle-mediated-enhanced hyperthermia using MR-guided high-intensity focused ultrasound ablation procedure. Nano Letter 2017; 17: 2532-2538.
doi: 10.1021/acs.nanolett.7b00272 |
| [2] |
Ter Haar G , Coussios C . High intensity focused ultrasound: past, present and future. Int, J. Hyperther 2007; 23: 85-87.
doi: 10.1080/02656730601185924 |
| [3] |
Liu T , Zhang N , Wang Z , Wu M , Chen Y , Ma M , et al . Endogenous catalytic generation of O2 bubbles for in situ ultrasound-guided high intensity focused ultrasound ablation. ACS nano 2017; 11: 9093-9102.
doi: 10.1021/acsnano.7b03772 |
| [4] | MacDonell J , Patel N , Rubino S , Ghoshal G , Fischer G , Burdette EC , et al . Magnetic resonance–guided interstitial high-intensity focused ultrasound for brain tumor ablation. Neurosurg Focus 2018; 44: E11 |
| [5] |
ZY Chen , Y Wu , Y Yang , JP Li , BS Xie , XJ Li , et al . Multilayered carbon nanotube yarn based optoacoustic transducer with high energy conversion efficiency for ultrasound application. Nano Energy 2018; 46: 314-321.
doi: 10.1016/j.nanoen.2018.02.006 |
| [6] |
Wang X , Yan F , Liu X , Wang P , Shao S , Sun Y , et al . Enhanced drug delivery using sonoactivatable liposomes with membrane-embedded porphyrins. J Control Release 2018; 286: 358-368.
doi: 10.1016/j.jconrel.2018.07.048 |
| [7] | Zhu P , Peng H , Mao L , Tian J . Piezoelectric single crystal ultrasonic transducer for endoscopic drug release in gastric mucosa. IEEE Trans. UFFC 2020; 68: 952-960 |
| [8] |
Yu K , Niu X , Krook-Magnuson E , He B . Intrinsic functional neuron-type selectivity of transcranial focused ultrasound neuromodulation. Nat Commun 2021; 12: 2519.
doi: 10.1038/s41467-021-22743-7 |
| [9] |
Du X , Li J , Niu G , Yuan JH , Xue KH , Xia M , et al . Lead halide perovskite for efficient optoacoustic conversion and application toward high-resolution ultrasound imaging. Nat Commun 2021; 12: 3348.
doi: 10.1038/s41467-021-23788-4 |
| [10] |
Y Wang , X Ge , H Ma , S Qi , G Zhang , Y Yao . Deep learning in medical ultrasound image analysis: a review. IEEE Access 2021; 9: 54310-54324.
doi: 10.1109/ACCESS.2021.3071301 |
| [11] | Kirk S . Recent advancements in ultrasound transducer: From material strategies to biomedical applications. BME frontiers 2022. |
| [12] | Ultrasound Market, https://www.marketsandmarkets.com/PressReleases/ultrasound-devices.asp. |
| [13] |
Reissland N . What the fetal face can tell us: a discussion of the evidence, implications and potential for further research. DSJUOG 2014; 8: 336-343.
doi: 10.5005/jp-journals-10009-1373 |
| [14] | Stergiopoulos S . Digital 3D/4D ultrasound imaging array. HAPSN 2010;367-405. |
| [15] |
Lulich SM , Berkson KH , de Jong K . Acquiring and visualizing 3D/4D ultrasound recordings of tongue motion. Journal of phonetics 2018; 71: 410-424.
doi: 10.1016/j.wocn.2018.10.001 |
| [16] | Pfister K , Schierling W , Jung EM , Apfelbeck H , Hennersperger C , Kasprzak PM . Standardized 2D ultrasound versus 3D/4D ultrasound and image fusion for measurement of aortic aneurysm diameter in follow-up after EVAR. CLIN HEMORHEOL MICRO 2016; 62: 249-260 |
| [17] | Merz E , Abramowicz JS . 3D/4D ultrasound in prenatal diagnosis: is it time for routine use? CLIN OBSTET GYNECOL 2012; 55:336-351. |
| [18] | C Risser , HJ Welsch , H Fonfara , H. Hewener , S Tretbar . High channel count ultrasound beamformer system with external multiplexer support for ultrafast 3D/4D ultrasound. ULTSYM; 2016: IEEE. |
| [19] |
Weismann C , Datz L . Diagnostic algorithm: how to make use of new 2D, 3D and 4D ultrasound technologies in breast imaging. EUR J RADIOL 2007; 64: 250-257.
doi: 10.1016/j.ejrad.2007.07.025 |
| [20] |
Zhang Z , Liu R , Li G , Su M , Li F , Zheng H , et al . A dual-mode 2D matrix array for ultrasound image-guided noninvasive therapy. IEEE Trans. Biomed Eng 2021; 68: 3482-3490.
doi: 10.1109/TBME.2021.3073951 |
| [21] | Wang N , Qiang Y , Qiu C , Chen Y , Wang X , Pan Y , et al . A multiplexed 32× 32 2d matrix array transducer for flexible sub-aperture volumetric ultrasound imaging. IEEE Trans Biomed Eng 2023; 71: 831-840 |
| [22] |
Dos Santos DS , Fool F , Mozaffarzadeh M , et al . A tiled ultrasound matrix transducer for volumetric imaging of the carotid artery. Sensors 2022; 22: 9799.
doi: 10.3390/s22249799 |
| [23] | Dos Santos DS , Fool F , Mozaffarzadeh M , Shabanimotlagh M , Noothout E , Kim T , et al. Miniature high frequency focused ultrasonic transducers for minimally invasive imaging procedures. SENSOR ACTUAT A-PHYS 2003; 103:76-82. |
| [24] | Wygant IO , Yeh DT , Zhuang X . A miniature real-time volumetric ultrasound imaging system. SPIE Medical Imaging Conference 2005: SPIE. |
| [25] |
Oralkan O , Ergun AS , Cheng CH , Johnson JA , Karaman M , Lee TH , et al . Volumetric ultrasound imaging using 2-D CMUT arrays. IEEE Trans UFFC 2003; 50: 1581-1594.
doi: 10.1109/TUFFC.2003.1251142 |
| [26] | Huang Q , Zeng Z . A review on real‐time 3D ultrasound imaging technology. BioMed Research Int 2017; 2017: 6027029 |
| [27] | Provost J , Papadacci C , Arango JE , Imbault M , Fink M , Gennisson JL , et al. 3D ultrafast ultrasound imaging in vivo. PHYS MED BIOL 2014; 59:L1. |
| [28] | Fenster A , Downey DB . 3D ultrasound imaging: A review. EMB-M 2002; 15: 41-51 |
| [29] |
Prager RW , Ijaz UZ , Gee A . Three-dimensional ultrasound imaging. Proc Inst Mech Eng H 2010; 224: 193-223.
doi: 10.1243/09544119JEIM586 |
| [30] | Savord B , Solomon R , editors. Fully sampled matrix transducer for real time 3D ultrasonic imaging. IEEE Symposium on Ultrasonics 2003; 2003: IEEE. |
| [31] | Qiang Y , Wang X , Liu R , Han X , Zheng H , Qiu W , et al . Sub-aperture ultrafast volumetric ultrasound imaging for fully sampled dual-mode matrix array. Ultrasonics 2024; 136: 107172 |
| [32] |
Sugeng L , Shernan SK , Salgo IS , Weinert L , Shook D , Raman J , et al . Live 3-dimensional transesophageal echocardiography: initial experience using the fully-sampled matrix array probe. JACC 2008; 52: 446-449.
doi: 10.1016/j.jacc.2008.04.038 |
| [33] | Yu J , Yoon H , Khalifa YM , Emelianov SY . Design of a volumetric imaging sequence using a vantage-256 ultrasound research platform multiplexed with a 1024-element fully sampled matrix array. IEEE Trans UFFC 2019; 67: 248-257 |
| [34] |
Eames MD , Hossack JA . Fabrication and evaluation of fully-sampled, two-dimensional transducer array for “Sonic Window” imaging system. Ultrasonics 2008; 48: 376-383.
doi: 10.1016/j.ultras.2008.01.011 |
| [35] | M Eames , Shiwei Zhou and J Hossack . High element count (3600), fully sampled, two dimensional transducer array. Proc. IEEE Ultrason Symp 2005;2243-2246. |
| [36] |
Davidsen RE , Jensen JA , Smith SW . Two-dimensional random arrays for real time volumetric imaging. ULTRASONIC IMAGING 1994; 16: 143-163.
doi: 10.1177/016173469401600301 |
| [37] | Smith SW , Pavy HG , von Ramm OT . High-speed ultrasound volumetric imaging system. I Transducer design and beam steering. IEEE Trans 1991; 38: 100-108 |
| [38] |
Lee W , Idriss SF , Wolf PD , Smith SW . A miniaturized catheter 2-D array for real-time, 3-D intracardiac echocardiography. IEEE Trans UFFC 2004; 51: 1334-1346.
doi: 10.1109/TUFFC.2004.1350962 |
| [39] | Huang Q , Zeng ZZ . BioMed Research International 2017; 1:1-20. |
| [40] |
Light ED , Idriss SF , Sullivan KF , Wolf PD , Smith SW . Real-time 3D laparoscopic ultrasonography. ULTRASONIC IMAGING 2005; 27: 129-144.
doi: 10.1177/016173460502700301 |
| [41] | K. Ji , P Zhao , R Gao , W Zhang , H Chen , J Fu . Three-dimensional ultrasound matrix imaging. Nat. Commun 2023; 14: 6793 |
| [42] |
Bera D , van den Adel F , Radeljic-Jakic N , Lippe B , Soozande M , Pertijs MAP , et al . Fast volumetric imaging using a matrix transesophageal echocardiography probe with partitioned transmit–receive array. Ultrasound Med Biol 2018; 44: 2025-2042.
doi: 10.1016/j.ultrasmedbio.2018.05.017 |
| [43] |
Favre H , Berendsen M , Waasdorp R , Maresca D . A compact 2D matrix array comprised of hexagonal transducer elements for fast volumetric ultrasound imaging. IEEE Trans UFFC 2025; 72: 1272-1281.
doi: 10.1109/TUFFC.2025.3591315 |
| [44] |
Wodnicki R , Foiret J , Liu B , Lu N , Sun X , Zhang J , et al . Handheld large 2D array with azimuthal planewave and row-multiplexed elevation beamforming enabled by local ASIC electronics. IEEE Trans UFFC 2025; 72: 962-978.
doi: 10.1109/TUFFC.2025.3570732 |
| [45] | Jang JH , Rasmussen MF , Bhuyan A . Dual-mode integrated circuit for imaging and HIFU with 2-D CMUT arrays IEEE IUS 2015. |
| [46] | SV Joshi , S Sadeghpour , M Kraft . Fabrication of high-frequency 2D flexible pMUT array. IEEE MEMS 2023;331-334. |
| [47] | Mitra M , Kumar A , Khandare S , Gaddale P , Anandan Y , Pedibhotla S , et al . Low-cost scalable PCB-based 2-D transducer arrays for volumetric photoacoustic imaging. IEEE sensors journal 2023; 24: 4380-4386 |
| [48] | Lukacs P , Pieris D , Davis G , Riding MW , Stratoudaki T . 2D laser induced phased arrays for remote volumetric ultrasonic imaging. IEEE Trans UFFC 2025; 72: 1053-1064 |
| [49] | Wang X , Huang W , Pan Y , Y Yan , C Shi , Y Chen , et al. Stepped 2D array needle transducer for 4D ultrasound imaging-guided spinal puncture. Innovation (Camb) 2025. |
| [50] | Morton CE , Lockwood GR , editors. Theoretical assessment of a crossed electrode 2-D array for 3-D imaging. IEEE Int Ultrason Symp 2003. |
| [51] |
Rasmussen MF , Christiansen TL , Thomsen EV , Jensen JA . 3-D imaging using row-column-addressed arrays with integrated apodization-part i: apodization design and line element beamforming. IEEE Trans Ultrason Ferroelectr Freq Control 2015; 62: 947-958.
doi: 10.1109/TUFFC.2014.006531 |
| [52] |
Albert I , Chen H , Wong LL , S Na , Z Li , M Macecek . Fabrication of a curved row–column addressed capacitive micromachined ultrasonic transducer array. J MEMS 2016; 25: 675-682.
doi: 10.1109/JMEMS.2016.2580152 |
| [53] |
Joshi SV , Sadeghpour S , Kraft M . Flexible PZT-based row-column addressed 2D PMUT array. IEEE Trans Ultrason Ferroelectr Freq Control 2024; 71: 1616-1626.
doi: 10.1109/TUFFC.2024.3465589 |
| [54] |
M Engholm , H Bouzari , T Lehrmann Christiansen , C Beers , JP Bagge , LM Moesner , et al . Probe development of CMUT and PZT row–column-addressed 2-D arrays. SENSOR ACTUAT A-PHYS 2018; 273: 121-133.
doi: 10.1016/j.sna.2018.02.031 |
| [55] |
Li G , Sun Q , Fu Y , Hou S , Zhang J , Xu KL , et al . A single crystal row–column-array for 3D ultrasound imaging. Ultrasonics 2024; 139: 107289.
doi: 10.1016/j.ultras.2024.107289 |
| [56] |
Ilkhechi AK , Palamar R , Sobhani MR , Dahunsi D , Ceroici C , Ghavami M , et al . High-voltage bias-switching electronics for volumetric imaging using electrostrictive row–column arrays. IEEE Trans Ultrason Ferroelectr Freq Control 2023; 70: 324-335.
doi: 10.1109/TUFFC.2023.3246424 |
| [57] |
Holbek S , Christiansen TL , Stuart MB , Beers C , Thomsen EV , Jensen JA . 3-D vector flow estimation with row–column-addressed arrays. IEEE Trans Ultrason Ferroelectr Freq Control 2016; 63: 1799-1814.
doi: 10.1109/TUFFC.2016.2582536 |
| [58] |
Sauvage J , Flesch M , Férin G , Nguyen-Dinh A , Porée J , Tanter M , et al . A large aperture row column addressed probe for in vivo 4D ultrafast doppler ultrasound imaging. PHYS MED BIOL 2018; 63: 215012.
doi: 10.1088/1361-6560/aae427 |
| [59] |
Sun Q , Hou S , He R , Fu Y , Wu J , Dai J , et al . Single crystal row-column array based rat brain 3-D ultrasound localization microscopy. IEEE Trans Ultrason Ferroelectr Freq Control 2025; 72: 698-708.
doi: 10.1109/TUFFC.2025.3563809 |
| [60] |
Dong Z , Lok UW , Lowerison MR , Huang C , Chen S , Song P . Three-dimensional shear wave elastography using acoustic radiation force and a 2-d row-column addressing (rca) array. IEEE Trans Ultrason Ferroelectr Freq Control 2024; 71: 448-458.
doi: 10.1109/TUFFC.2024.3366540 |
| [61] |
Tan Q , Riemer K , Hansen-Shearer J , Yan J , Toulemonde M , Taylor L , et al . Transcutaneous imaging of rabbit kidney using 3-D acoustic wave sparsely activated localization microscopy with a row-column-addressed array. IEEE Trans Biomed Eng 2024; 71: 3446-3456.
doi: 10.1109/TBME.2024.3426487 |
| [62] | Lian Y , Zeng Y , Zhou S , Zhu H , Li F , Cai X . Deep beamforming for real-time 3D passive acoustic mapping with row-column-addressed arrays. IEEE Trans Ultrason Ferroelectr Freq Control 2024; 72: 226-237 |
| [63] | Hou S , Sun Q , Zhang J , Yang F , Bao G , Xu K , et al. A new row-column-addressed transducer for 3D ultrasound imaging. Ultrasonics 158, 2026,107814. |
| [64] | Hansen-Shearer J , Lerendegui M , Toulemonde M , Tang MX . Ultrafast 3-D ultrasound imaging using row–column array-specific frame-multiply-and-sum beamforming. IEEE Trans Ultrason Ferroelectr Freq Control 2021; 69: 480-488 |
| No related articles found! |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Share: WeChat
Copyright ©2018 Advanced Ultrasound in Diagnosis and Therapy
|
Advanced Ultrasound in Diagnosis and Therapy (AUDT) a>
is licensed under a Creative Commons Attribution 4.0 International License a>.
