| [1] |  
											  Hoffmann R, Reich C, Skerl K. Evaluating different combination methods to analyse ultrasound and shear wave elastography images automatically through discriminative convolutional neural network in breast cancer imaging. Int J Comput Assist Radiol Surg 2022; 17:2231-2237. 
											 												 doi: 10.1007/s11548-022-02737-6  | 
										
| [2] |  
											  Masroor I, Ahmed MN, Pash S. To evaluate the role of sonography as an adjunct to mammography in women with dense breasts. J Pak Med Assoc 2009; 59:298-301. 
											 												 pmid: 19438134  | 
										
| [3] |  
											  Maskarinec G, Meng L, Ursin G. Ethnic differences in mammographic densities. Int J Epidemiol 2001; 30:959-965. 
											 												 doi: 10.1093/ije/30.5.959 pmid: 11689504  | 
										
| [4] | American College of Radiology. Breast imaging reporting and data system, Breast imaging atlas. fifth ed. Reston 2013 | 
| [5] |  
											  Margolin FR, Leung JW, Jacobs RP, Denny SR. Percutaneous imaging-guided core breast biopsy: 5 years’ experience in a community hospital. AJR Am J Roentgenol 2001; 177:559-564. 
											 												 doi: 10.2214/ajr.177.3.1770559  | 
										
| [6] |  
											  Wiratkapun C, Bunyapaiboonsri W, Wibulpolprasert B, Lertsithichai P. Biopsy rate and positive predictive value for breast cancer in BI-RADS category 4 breast lesions. J Med Assoc Thai 2010; 93:830-837. 
											 												 pmid: 20649064  | 
										
| [7] |  
											  Matsumoto K, Miyaaki H, Fukushima M, Sasaki R, Haraguchi M, Miuma S, Nakao K. The impact of single-nucleotide polymorphisms on liver stiffness and controlled attenuation parameter in patients treated with direct-acting antiviral drugs for hepatitis C infection. Biomed Rep 2022; 16:9. 
											 												 doi: 10.3892/br.2021.1492 pmid: 34987793  | 
										
| [8] |  
											  Sigrist RMS, El Kaffas A, Jeffrey RB, Rosenberg J, Willmann JK. Intra-individual comparison between 2-D shear wave elastography (GE System) and virtual touch tissue quantification (Siemens System) in grading liver fibrosis. Ultrasound Med Biol 2017; 43:2774-2782. 
											 												 doi: S0301-5629(17)31295-4 pmid: 28967501  | 
										
| [9] |  
											  Bai M, Du L, Gu J, Li F, Jia X. Virtual touch tissue quantification using acoustic radiation force impulse technology: Initial clinical experience with solid breast masses. J Ultrasound Med 2012; 31:289-294. 
											 												 doi: 10.7863/jum.2012.31.2.289 pmid: 22298873  | 
										
| [10] |  
											  Zhi H, Ou B, Xiao XY, Peng YL, Wang Y, Liu LS, et al.  Ultrasound elastography of breast lesions in Chinese women: A multicenter study in China. Clin Breast Cancer 2013; 13:392-400. 
											 												 doi: 10.1016/j.clbc.2013.02.015 pmid: 23830799  | 
										
| [11] |  
											  Tanter M, Bercoff J, Athanasiou A, Deffieux T, Gennisson JL, Montaldo G, et al.  Quantitative assessment of breast lesion viscoelasticity: Initial clinical results using supersonic shear imaging. Ultrasound Med Biol 2008; 34:1373-1386. 
											 												 doi: 10.1016/j.ultrasmedbio.2008.02.002 pmid: 18395961  | 
										
| [12] | Tozaki M, Isobe S, Fukuma E. Preliminary study of ultrasonographic tissue quantification of the breast using the acoustic radiation force impulse (ARFI) technology. Eur J Radiol 2011; 80:e182-e187. | 
| [13] |  
											  Wojcinski S, Brandhorst K, Sadigh G, Hillemanns P, Degenhardt F. Acoustic radiation force impulse imaging with Virtual Touch™ tissue quantification: mean shear wave velocity of malignant and benign breast masses. Int J Womens Health 2013; 5:619-627 
											 												 doi: 10.2147/IJWH.S50953 pmid: 24109199  | 
										
| [14] | Tamaki K, Tamaki N, Kamada Y, Uehara K, Miyashita M, Ishida T, et al. A non-invasive modality: the US Virtual Touch Tissue Quantification (VTTQ) for evaluation of breast cancer. Jpn J Clin Oncol 2013; 43:889-895. | 
| [15] | Berg WA, Cosgrove DO, Doré CJ, Schäfer FK, Svensson WE, Hooley RJ, et al. Shear-wave elastography improves the specificity of breast US: The BE 1 multinational study of 939 masses. Radiology 2012;262: 435-449. | 
| [16] |  
											  Youk JH, Son EJ, Gweon HM, Kim H, Park YJ, Kim JA. Comparison of strain and shear wave elastography for the differentiation of benign from malignant breast lesions, combined with B-mode ultrasonography: qualitative and quantitative assessments. Ultrasound Med Biol 2014; 40:2336-2344. 
											 												 doi: 10.1016/j.ultrasmedbio.2014.05.020 pmid: 25130444  | 
										
| [17] |  
											  Hou XJ, Sun AX, Zhou XL, Ji Q, Wang HB, Wei H, et al.  The application of Virtual Touch tissue quantification (VTQ) in diagnosis of thyroid lesions: A preliminary study. Eur J Radiol 2013; 82:797-801. 
											 												 doi: 10.1016/j.ejrad.2012.12.023  | 
										
| [18] | Chang JM, Moon WK, Cho N, Kim SJ. Breast mass evaluation: factors influencing the quality of US elastography. Radiology 2011; 259:59-64 | 
| No related articles found! | 
										
  | 
								||