[an error occurred while processing this directive]

Advanced Ultrasound in Diagnosis and Therapy ›› 2023, Vol. 7 ›› Issue (3): 217-227.doi: 10.37015/AUDT.2023.230030

• • 上一篇    下一篇

  

  • 收稿日期:2023-04-08 修回日期:2023-04-16 接受日期:2023-07-27 出版日期:2023-09-30 发布日期:2023-10-09

Artificial Intelligence-assisted Medical Imaging in Interventional Management of Valvular Heart Disease

Wenwen Chen, BSa,b,c, Yuji Xie, MDa,b,c, Zisang Zhang, MDa,b,c, Ye Zhu, MSa,b,c, Yiwei Zhang, MDa,b,c, Shuangshuang Zhu, MD, PhDa,b,c, Chun Wu, MD, PhDa,b,c, Ziming Zhang, MDa,b,c, Xin Yang, PhDa,b,c, Man wei Liu, MD, PhDa,b,c, Mingxing Xie, MD, PhDa,b,c,*(), Li Zhang, MD, PhDa,b,c,*()   

  1. a Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
    b Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China
    c Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
  • Received:2023-04-08 Revised:2023-04-16 Accepted:2023-07-27 Online:2023-09-30 Published:2023-10-09
  • Contact: Mingxing Xie, MD, PhD, Li Zhang, MD, PhD E-mail:xiemx@hust.edu.cn;zli429@hust.edu.cn

Abstract:

The integration of medical imaging and artificial intelligence (AI) has revolutionized interventional therapy of valvular heart diseases (VHD), owing to rapid development in multimodality imaging and healthcare big data. Medical imaging techniques, such as echocardiography, cardiovascular magnetic resonance (CMR) and computed tomography (CT), play an irreplaceable role in the whole process of pre-, intra- and post-procedural intervention of VHD. Different imaging techniques have unique advantages in different stages of interventional therapy. Therefore, single imaging technique can’t fully meet the requirements of complicated clinical scenarios. More importantly, a single intraoperative image provides only limited vision of the surgical field, which could be a potential source for unsatisfactory prognosis. Besides, the non-negligible inter- and intra-observer variability limits the precise quantification of heart valve structure and function in daily clinical practice. With the help of analysis clustered and regressed by big data and exponential growth in computing power, AI broken grounds in the interventional therapy of VHD, including preoperative planning, intraoperative navigation, and postoperative follow-up. This article reviews the state-of-the-art progress and directions in the application of AI for medical imaging in the interventional therapy of VHD.

Key words: VHD, AI, Machine learning, Medical imaging

"

"

Study VHD Task AI methods Samples Performance metrics
Kang, N. G. et al. [4](2021) AS Diagnosed severe AS LASSO; RFs; XGBoost Training: 312 subjects Testing: 96 subjects AUC: 0.921 (LASSO & XGBoost)
Sengupta, P. P. et al. [5](2021) AS Distinguished AS phenotypes TDA; ML 1964 subjects AUC: 0.988
Accuracy (%): 94.3
Precision (%): 91.3
Recall (%): 95.5
Yang, F. et al. [6](2014) AS Differential diagnosis with other diseases ML Training: 1335 subjects Validation: 311 subjects
Testing: 434 subjects
AUC: 0.97
Accuracy (%): 94
Sensitivity (%): 90
Specificity (%): 94
Moghaddasi, H. et al. [7](2016) MR Detected normal, mild, moderate and severe MR subjects Textural analysis; SVM;
LDA; TM
5004 images Accuracy (%): 99.45 (SVM) Accuracy (%): 95.72 (LDA,NN) Accuracy (%): 95 (TM)
Sensitivity (%): 99.38
Specificity (%): 99.63
Pimor, A. et al. [8](2019) MR Distinguished MR phenotypes DL 122 subjects HR: 3.57 (1.72-7.44)
Bartko, P. E. et al. [9](2021) MR Explored the morphological and Functional characteristics of secondary MR PC; cluster analysis 383 subjects HR: 2.18 (clusters3)

"

Study Operation Task Technology Samples Performance metrics
Theriault-Lauzier, P. et al. [10] (2021) TAVR Plane positioning CNN 94 subjects Localization error (mm): 0.9 ± 0.8 (testing)
Al, W.A. et al. [11] (2018) TAVR Located important anatomic markers ML 71 subjects Localization error (mm): 2.04 ± 1.11
Rocatello, G. et al. [12] (2019) TAVR Determined the optimal valve size and implantation position FE 62 subjects Accuracy (%): 71
Maximum contact pressure (%): 75
Contact pressure index (%): 71
De Jaegere, P. et al. [13] (2016) TAVR Simulated the TAVR surgical process FE 60 subjects Accuracy (%): 80
Cutoff value (ml/s): 16.0
Sensitivity: 0.72
Specificity: 0.78
Auricchio, F. et al. [14] (2014) TAVR Simulated valve implantation FE 2 subjects Stress state has consistency
(between 2 subjects)
Astudillo, P. et al. [15] (2019) TAVR Calculated the size of the implanted prosthesis CNN Training: 355subjects
Testing:
118 subjects
Total analysis time(s): < 1
Device size has consistency
(between the manual and automatic selection)
Astudillo, P. et al. [16] (2019) TMVR Measured multiple biological parameters DL 71 subjects Total analysis time (s): < 1
Oguz, D. et al. [17] (2019) TMVR Explored the correlation between 3D-TEE parameters and MR reduction 3D TEE; Mitral Valve Navigator. 59 subjects Optimal MR reduction: 68%
Guerrero, M. et al. [18] (2018) TMVR Simulated valve implantation FE / Total analysis time: < 3 h
Wang, D.D. et al. [19,20] (2018) TMVR Simulated valve implantation CAD 38 subjects R2: 0.8169 (neo-LVOT surface area)
Sensitivity: 100%
Specificity: 96.8%
Kong, F. et al. [21] (2020) TEER simulated the biomechanics of MC implantation FE; MC. 1 subject Antero-posterior distance: ↓26%
Annulus area: ↓19%
Valve opening orifice area: ↓48%
Regurgitant orifice area: ↓63%
Anterior leaflet peak stresses: ↑ 64%
Posterior leaflet peak stresses: ↑62%
Anterior leaflet peak strains: ↑ 20%
Posterior leaflet peak strains: ↑10%
Sturla, F. et al. [22] (2015) TEER Simulated the biomechanics of MC implantation FE; MC. 3 subjects Systolic CoA: ↑11-40%
Systolic leaflet stresses (Kpa): 100-500
Diastolic leaflet stresses (Kpa): 250
(subject 3) Diastolic orifice area (%): ↓58.9%
Caballero, A. et al. [23] (2020) TEER Evaluated the biomechanics of MC implantation FE; FSI; MC. 1 subject Antero-posterior distance: ↓28%
Mitral annulus spherecity index: ↓39%
Anatomic regurgitant orifice area: ↓52% Anatomic opening orifice area: ↓71%
Diastolic anterior leaflet stress: ↑210%
Diastolic posterior leaflet stress: ↑145%
Mansi, T. et al. [24] (2012) TEER Evaluated the biomechanical impact of mitral valve repair FE; ML. 25 subjects Mean error (mm):1.49 ± 0.62 (ground truth)
Mean error (mm):2.75 ± 0.86 (automatic detection)
Total analysis time (min): < 14
Dabiri, Y. et al. [25] (2023) TEER Predicted the effect of TEER therapy with MC DL; XGBoost. 1267 FE models MAPE: 54 and 0.310 (DL)
MAPE: 0.115 and 0.231 (XGBoost)
Total analysis time (s): < 1

"

Study Operation Task Technology Samples Performance metrics
Biaggi, P. et al. [26] (2020) TAVR Investigated the efficacy of FS in the perioperative period of TAVR FI; EN; 3D TEE. Total: 138subjects FS+: 69subjects FS-: 69subjects Procedure time (min): 42.1 ± 15.2 (FS+)
Procedure time (min): 49.2 ± 20.7 (FS-)
Contrast agent use (ml): 34.3 ± 22.0 (FS+)
Contrast agent use (ml): 39.0 ± 23.3 (FS-)
Fluoroscopy time (min): 11.4 ± 4.7 (FS+)
Fluoroscopy time (min): 10.9 ± 5.5 (FS-)
Pearson correlation r: 0.63-0.78
Interclass correlation coefficient: 0.95-0.99
Luo, Z. et al. [27] (2013) TAVR Reconstructed aortic valve models and determined the target location for aortic valve prosthesis implantation MTS; 2D US; 4D CT. ECG signal Aortic root segmentation algorithm error (mm): 0.92 ± 0.85
Computational time (ms): 36.13 ± 6.26
Yielding fiducial localization errors (mm):
3.02 ± 0.39
Target registration errors(mm): 3.31 ± 1.55
Deployment distance(mm): 3.23 ± 0.94
Tilting errors (°): 5.85 ± 3.06
Mazomenos, E. B. et al. [28] (2016) TAVR Evaluated surgical skills and verified the role of robot assisted TAVR surgery FE; k-means clustering; EM. 12 subjects (novice group: 6 subjects) The median value of the procedure time (s): 34.9 (stage 1)
The median value of the procedure time (s): 111.2 (stage 2)
Maximum accuracy (%): 83 (k-means)
Maximum accuracy (%): 91 (EM)
Average speed (px/s): 22.3 (stage1)
Average speed (px/s): 22 (stage2)
P = 0.031(conventional equipment vs robotic system )
Prihadi, E. A. et al. [29] (2018) TAVR Quantified aortic ring and root size 3D TEE; AVN. 150 subjects Mean analysis time (min): 4.2 ± 1.0
r≥0.90 (inter- and intra-observer variability)
Lang, P. et al. [30] (2012) TAVR Build TAVI's enhanced image guidance system 3D TEE / Mean contour boundary distance error (mm): 1.3 (short-axis views)
Mean contour boundary distance error (mm): 2.8 (long-axis views)
Mean target registration error (mm): 5.9
Coisne, A. et al. [31] (2020) TMVR Defined the optimal 3D TEE parameters for TMVR 3D TEE 57 subjects AUC: 0.88-0.91 (mitral annular area)
AUC: 0.85-0.91 (mitral annular perimeter)
Jin, C. N. et al. [32] (2016) TMVR Located MVP AIUS 90 subjects Accuracy (%): 89 (nonexperts)
Image analysis time (min): 1.9 ± 0.7 (experts)
Image analysis time (min): 5.0 ± 0.5 (nonexperts)
Altiok, E. et al. [33] (2011) TEER Evaluated the value of RT 3D TEE RT 3D TEE; 2D TEE. 28 subjects Advantages: 9/11 (RT 3D TEE)
Melillo, F. et al. [34] (2021) TEER Explored the TEER treatment effect after MC implantation FI; MC. 80 subjects Fluoroscopy time (min): 37.3 ± 14.6
Procedural time (min): 92.2 ± 36.1
Sündermann, S.H. et al. [35] (2014) TEER Evaluated the feasibility and safety of using MC EN Software; MC. 21 subjects Radiation dose (Gy/cm2): 146.5 ± 123.6
Total procedure time (min): 136.2 ± 50.2
[1] Nkomo VT, Gardin JM, Skelton TN, Gottdiener JS, Scott CG, Enriquez-Sarano M. Burden of valvular heart diseases: a population-based study. Lancet 2006; 368:1005-1011.
doi: 10.1016/S0140-6736(06)69208-8 pmid: 16980116
[2] Ouyang D, He B, Ghorbani A, Yuan N, Ebinger J, Langlotz CP, et al. Video-based AI for beat-to-beat assessment of cardiac function. Nature 2020; 580:252-256.
doi: 10.1038/s41586-020-2145-8
[3] Zhang J, Gajjala S, Agrawal P, Tison GH, Hallock LA, Beussink-Nelson L, et al. Fully automated echocardiogram interpretation in clinical practice. Circulation 2018; 138:1623-1635.
doi: 10.1161/CIRCULATIONAHA.118.034338 pmid: 30354459
[4] Kang NG, Suh YJ, Han K, Kim YJ, Choi BW. Performance of prediction models for diagnosing severe aortic stenosis based on aortic valve calcium on cardiac computed tomography: incorporation of radiomics and machine learning. Korean J Radiol 2021; 22:334-343.
doi: 10.3348/kjr.2020.0099 pmid: 33236537
[5] Sengupta PP, Shrestha S, Kagiyama N, Hamirani Y, Kulkarni H, Yanamala N, et al. A machine-learning framework to identify distinct phenotypes of aortic stenosis severity. JACC Cardiovasc Imaging 2021; 14:1707-1720.
doi: 10.1016/j.jcmg.2021.03.020 pmid: 34023273
[6] Yang F, Chen X, Lin X, Chen X, Wang W, Liu B, et al. Automated analysis of Doppler echocardiographic videos as a screening tool for valvular heart diseases. JACC Cardiovascular Imaging 2022; 15:551-563.
doi: 10.1016/j.jcmg.2021.08.015
[7] Moghaddasi H, Nourian S. Automatic assessment of mitral regurgitation severity based on extensive textural features on 2D echocardiography videos. Comput Biol Med 2016; 73:47-55.
doi: 10.1016/j.compbiomed.2016.03.026 pmid: 27082766
[8] Pimor A, Galli E, Vitel E, Corbineau H, Leclercq C, Bouzille G, et al. Predictors of post-operative cardiovascular events, focused on atrial fibrillation, after valve surgery for primary mitral regurgitation. Eur Heart J Cardiovasc Imaging 2019; 20:177-184.
doi: 10.1093/ehjci/jey049 pmid: 29608669
[9] Bartko PE, Heitzinger G, Spinka G, Pavo N, Prausmüller S, Kastl S, et al. Principal morphomic and functional components of secondary mitral regurgitation. JACC Cardiovascular Imaging 2021; 14:2288-2300.
doi: 10.1016/j.jcmg.2021.05.020
[10] Theriault-Lauzier P, Alsosaimi H, Mousavi N, Buithieu J, Spaziano M, Martucci G, et al. Recursive multiresolution convolutional neural networks for 3D aortic valve annulus planimetry. Int J Comput Assist Radiol Surg 2020; 15:577-588.
doi: 10.1007/s11548-020-02131-0 pmid: 32130646
[11] Al WA, Jung HY, Yun ID, Jang Y, Park HB, Chang HJ. Automatic aortic valve landmark localization in coronary CT angiography using colonial walk. PLoS One 2018; 13:e0200317.
doi: 10.1371/journal.pone.0200317
[12] Rocatello G, El Faquir N, de Backer O, Swaans MJ, Latib A, Vicentini L, et al. The impact of size and position of a mechanical expandable transcatheter aortic valve: novel insights through computational modelling and simulation. J Cardiovasc Transl Res 2019; 12:435-446.
doi: 10.1007/s12265-019-09877-2 pmid: 31444672
[13] de Jaegere P, De Santis G, Rodriguez-Olivares R, Bosmans J, Bruining N, Dezutter T, et al. Patient-specific computer modeling to predict aortic regurgitation after transcatheter aortic valve replacement. JACC Cardiovasc Interv 2016; 9:508-512.
doi: 10.1016/j.jcin.2016.01.003
[14] Auricchio F, Conti M, Morganti S, Reali A. Simulation of transcatheter aortic valve implantation: a patient-specific finite element approach. Comput Methods Biomech Biomed Engin 2014; 17:1347-1357.
doi: 10.1080/10255842.2012.746676 pmid: 23402555
[15] Astudillo P, Mortier P, Bosmans J, De Backer O, de Jaegere P, De Beule M, et al. Enabling automated device size selection for transcatheter aortic valve implantation. J Interv Cardiol 2019; 2019:3591314.
[16] Astudillo P, De Beule M, Dambre J, Mortier P. Towards safe and efficient preoperative planning of transcatheter mitral valve interventions. Morphologie 2019; 103:139-147.
doi: S1286-0115(19)30053-0 pmid: 31570309
[17] Oguz D, Eleid MF, Dhesi S, Pislaru SV, Mankad SV, Malouf JF, et al. Quantitative three-dimensional echocardiographic correlates of optimal mitral regurgitation reduction during transcatheter mitral valve repair. J Am Soc Echocardiogr 2019; 32:1426-1435.
doi: 10.1016/j.echo.2019.06.014
[18] Guerrero M, Urena M, Wang DD, O'Neill W, Feldman T. Reply: patient-specific computer modeling for the planning of transcatheter mitral valve replacement. J Am Coll Cardiol 2018; 72:958.
doi: S0735-1097(18)35280-X pmid: 30115239
[19] Wang DD, Eng MH, Greenbaum AB, Myers E, Forbes M, Karabon P, et al. Validating a prediction modeling tool for left ventricular outflow tract (LVOT) obstruction after transcatheter mitral valve replacement (TMVR). Catheter Cardiovasc Interv 2018; 92:379-387.
doi: 10.1002/ccd.v92.2
[20] Wang DD, Eng M, Greenbaum A, Myers E, Forbes M, Pantelic M, et al. Predicting LVOT obstruction after TMVR. JACC Cardiovasc Imaging 2016; 9:1349-1352.
doi: S1936-878X(16)30041-9 pmid: 27209112
[21] Kong F, Caballero A, McKay R, Sun W. Finite element analysis of MitraClip procedure on a patient-specific model with functional mitral regurgitation. J Biomech 2020; 104:109730.
doi: 10.1016/j.jbiomech.2020.109730
[22] Sturla F, Redaelli A, Puppini G, Onorati F, Faggian G, Votta E. Functional and biomechanical effects of the edge-to-edge repair in the setting of mitral regurgitation: consolidated knowledge and novel tools to gain insight into its percutaneous implementation. Cardiovasc Eng Technol 2015; 6:117-140.
doi: 10.1007/s13239-014-0208-4 pmid: 26577231
[23] Caballero A, Mao W, McKay R, Hahn RT, Sun W. A comprehensive engineering analysis of left heart dynamics after MitraClip in a functional mitral regurgitation patient. Front Physiol 2020; 11:432.
doi: 10.3389/fphys.2020.00432 pmid: 32457650
[24] Mansi T, Voigt I, Georgescu B, Zheng X, Mengue EA, Hackl M, et al. An integrated framework for finite-element modeling of mitral valve biomechanics from medical images: application to MitralClip intervention planning. Med Image Anal 2012; 16:1330-1346.
doi: 10.1016/j.media.2012.05.009 pmid: 22766456
[25] Dabiri Y, Mahadevan VS, Guccione JM, Kassab GS. Machine learning used for simulation of MitraClip intervention: A proof-of-concept study. Front Genet 2023; 14:1142446.
doi: 10.3389/fgene.2023.1142446
[26] Biaggi P, Sager DF, Külling J, Küest S, Wyss C, Hürlimann D, et al. Potential value of fusion imaging and automated three-dimensional heart segmentation during transcatheter aortic valve replacement. J Am Soc Echocardiogr 2020;33:516-517.
[27] Luo Z, Cai J, Peters TM, Gu L. Intra-operative 2-D ultrasound and dynamic 3-D aortic model registration for magnetic navigation of transcatheter aortic valve implantation. IEEE Trans Med Imaging 2013; 32:2152-2165.
doi: 10.1109/TMI.2013.2275233
[28] Mazomenos EB, Chang PL, Rippel RA, Rolls A, Hawkes DJ, Bicknell CD, et al. Catheter manipulation analysis for objective performance and technical skills assessment in transcatheter aortic valve implantation. Int J Comput Assist Radiol Surg 2016; 11:1121-1131.
[29] Prihadi EA, van Rosendael PJ, Vollema EM, Bax JJ, Delgado V, Ajmone Marsan N,. Feasibility, accuracy, and reproducibility of aortic annular and root sizing for transcatheter aortic valve replacement using novel automated three-dimensional echocardiographic software: comparison with multi-detector row computed tomography. J Am Soc Echocardiogr 2018; 31:505-514.
doi: 10.1016/j.echo.2017.10.003
[30] Lang P., Rajchl M., McLeod A. J., Chu M. & Peters T. Feature identification for image-guided transcatheter aortic valve implantation. Medical Imaging 2012.
[31] Coisne A, Pontana F, Aghezzaf S, Mouton S, Ridon H, Richardson M, et al. Utility of three-dimensional transesophageal echocardiography for mitral annular sizing in transcatheter mitral valve replacement procedures: a cardiac computed tomographic comparative study. J Am Soc Echocardiogr 2020; 33:1245-1252.
doi: 10.1016/j.echo.2020.04.030
[32] Jin CN, Salgo IS, Schneider RJ, Kam KK, Chi WK, So CY, et al. Using anatomic intelligence to localize mitral valve prolapse on three-dimensional echocardiography. J Am Soc Echocardiogr 2016; 29:938-945.
[33] Altiok E, Becker M, Hamada S, Reith S, Marx N, Hoffmann R. Optimized guidance of percutaneous edge-to edge repair of the mitral valve using real-time 3-D transesophageal echocardiography. Clin Res Cardiol 2011; 100:675-681.
doi: 10.1007/s00392-011-0296-1 pmid: 21369924
[34] Melillo F, Fisicaro A, Stella S, Ancona F, Capogrosso C, Ingallina G, et al. Systematic fluoroscopic-echocardiographic fusion imaging protocol for transcatheter edge-to-edge mitral valve repair intraprocedural monitoring. J Am Soc Echocardiogr 2021; 34:604-613.
doi: 10.1016/j.echo.2021.01.010
[35] Sündermann SH, Biaggi P, Grünenfelder J, Gessat M, Felix C, Bettex D, et al. Safety and feasibility of novel technology fusing echocardiography and fluoroscopy images during MitraClip interventions. EuroIntervention 2014;9:1210-1216.
[36] Navarese EP, Zhang Z, Kubica J, Andreotti F, Farinaccio A, Bartorelli AL, et al. Development and validation of a practical model to identify patients at risk of bleeding after TAVR. JJACC Cardiovasc Interv 2021; 14:1196-1206.
[37] Jia Y, Luosang G, Li Y, Wang J, Li P, Xiong T, et al. Deep learning in prediction of late major bleeding after transcatheter aortic valve replacement. Clin Epidemiol 2022; 14:9-20.
doi: 10.2147/CLEP.S333147 pmid: 35046728
[38] Kwak S, Everett RJ, Treibel TA, Yang S, Hwang D, Ko T, et al. Markers of myocardial damage predict mortality in patients with aortic stenosis. J Am Coll Cardiol 2021; 78:545-558.
doi: 10.1016/j.jacc.2021.05.047 pmid: 34353531
[39] Zweck E, Spieker M, Horn P, Iliadis C, Metze C, Kavsur R, et al. Machine learning identifies clinical parameters to predict mortality in patients udergoing transcatheter mitral valve repair. JACC Cardiovasc Interv 2021; 14:2027-2036.
doi: 10.1016/j.jcin.2021.06.039
[40] Modine T, Perrin N, Ben Ali W. Trust in machine learning models for mortality prediction following mitral TEER: Are we ready yet? JACC Cardiovasc Interv 2021; 14:2037-2038.
doi: 10.1016/j.jcin.2021.08.002
[41] Hernandez-Suarez DF, Kim Y, Villablanca P, Gupta T, Wiley J, Nieves-Rodriguez BG, et al. Machine learning prediction models for in-hospital mortality after transcatheter aortic valve replacement. JACC Cardiovasc Interv 2019; 12:1328-1338.
doi: 10.1016/j.jcin.2019.06.013
[42] Tse G, Zhou J, Lee S, Liu Y, Leung KSK, Lai RWC, et al. Multi-parametric system for risk stratification in mitral regurgitation: A multi-task Gaussian prediction approach. Eur J Clin Invest 2020; 50:e13321.
doi: 10.1111/eci.v50.11
[43] Engelhardt S, Sauerzapf S, Brčić A, Karck M, Wolf I, De Simone R. Replicated mitral valve models from real patients offer training opportunities for minimally invasive mitral valve repair. Interact Cardiovasc Thorac Surg 2019; 29:43-50.
doi: 10.1093/icvts/ivz008
[44] Liu J, Al'Aref SJ, Singh G, Caprio A, Moghadam AAA, Jang SJ, et al. An augmented reality system for image guidance of transcatheter procedures for structural heart disease. PloS One 2019; 14:e0219174.
doi: 10.1371/journal.pone.0219174
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
[an error occurred while processing this directive]