[an error occurred while processing this directive]

Advanced Ultrasound in Diagnosis and Therapy ›› 2023, Vol. 7 ›› Issue (2): 61-72.doi: 10.37015/AUDT.2023.230020

• • 上一篇    下一篇

  

  • 收稿日期:2023-03-29 修回日期:2023-04-07 接受日期:2023-04-22 出版日期:2023-06-30 发布日期:2023-04-27

Current Status, Prospect and Bottleneck of Ultrasound AI Development: A Systemic Review

Siyi Xun, MAa, Wei Ke, PhDa, Mingfu Jiang, MAa, Huachao Chen, BAa, Haoming Chen, BAa, Chantong Lam, PhDa, Ligang Cui, MDb,*(), Tao Tan, PhDa,*()   

  1. a Faculty of Applied Sciences, Macao Polytechnic University, Macao
    b Department of Ultrasonography, Peking University Third Hospital, Beijing, China
  • Received:2023-03-29 Revised:2023-04-07 Accepted:2023-04-22 Online:2023-06-30 Published:2023-04-27
  • Contact: Ligang Cui, MD, Tao Tan, PhD E-mail:ligangcui@pku.edu.cn;taotan@mpu.edu.mo

Abstract:

In recent years, ultrasound imaging has become an important means of medical diagnosis because of its safety and radiation-free advantages. With the continuous progress of deep learning, Artificial Intelligence (AI) models can process large amounts of ultrasound data quickly and accurately, providing decision support for clinicians in diagnosis. From the perspective of ultrasound image classification, detection and segmentation, this paper systemically introduces the latest progress of AI technology in ultrasound imaging, and summarizes the recent high-level related work. At the same time, we also discuss the development prospect and bottleneck of AI in ultrasound imaging processing, which provides the future research directions for researchers in related fields.

Key words: Artificial intelligence, Ultrasound imaging, Deep learning, Diagnosis

"

"

"

"

Paper Region Method Dataset Performance
Cao et al. [7] Breast lesions DenseNet Private dataset
Benign = 579
Malignant = 464
APR = 0.9689
ARR = 0.6723
F1 = 0.7938
Al-Dhabyani et al. [8] Breast lesions CNN Transfer learning BUSI dataset
Total = 780
Normal = 133
Benign = 437
Malignant = 210
Acc = 0.94
Han et al. [9] Breast lesions DDSTN Private dataset
Total = 106
Benign = 54
Malignant = 51
Acc = 0.8679 ± 0.0154
Sen = 0.8645 ± 0.0144
Spe = 0.8731 ± 0.0437
Zhou et al. [10] Breast lesions Multi-task learning Private dataset
Total = 170
Acc = 0.741
Rec = 0.798
Pre = 0.826
FPR = 0.392
F1 = 0.811
Badawy et al. [11] Breast lesions FCM U-Net Private dataset
Total = 1200
Acc = 0.9544
F1 = 0.6807
Bourouis et al. [12] Breast lesions GWO-WNN Private dataset
Total = 346
Benign = 97
Malignant = 249
Acc = 0.98
Sen = 0.988
Spe = 0.959
Jabeen et al. [13] Breast lesions CNN DarkNet53 BUSI dataset
Total = 780
Normal = 133
Benign = 437
Malignant = 210
Acc = 0.991
Ragab et al. [14] Breast lesions VGG-16 VGG-19 SqueezeNet BUSI dataset
Total = 780
Normal = 133
Benign = 437
Malignant = 210
Acc = 0.9709
Gheflati et al. [15] Breast lesions ViT BUSI dataset
Total = 780
Normal = 133
Benign = 437
Malignant = 210
Acc = 0.867
AUC = 0.95
Ayana et al. [16] Breast lesions MSTL Mendeley dataset
Total = 250
Benign = 100
Malignant = 150
Acc = 0.999
Sen = 1
Spe = 0.98
AUC = 0.999
F1 = 0.989
Liu et al. [17] Thyroid nodules Multi-branch classification network Private dataset1
Benign = 2551
Malignant = 5139
Private dataset2
Benign = 128
Malignant = 322
Acc = 0.971
Sen = 0.982
Spe = 0.951
Kuo et al. [18] Kidney ResNet Private dataset
Total = 4505
Acc = 0.856
Roy et al. [19] Lung CNN ICLUS-DB video
Total = 277
F1 = 0.61 ± 0.12
Pre = 0.70 ± 0.19
Rec = 0.60 ± 0.07
Xie et al. [20] Brain CNN Private dataset
Standard = 15372
Abnormal = 14047
Acc = 0.963
Sen = 0.969
Spe = 0.959
Sanagala et al. [21] Carotid DCNN Transfer learning Private dataset
Total = Unknown
AUC = 0.8333, 0.9566

"

Paper Region Method Dataset Performance
Chen et al. [22] Anatomical structures Iterative multi-domain regularized deep learning Private dataset
Train = Unknown
Test = Unknown
DSC = 0.927
Cui et al. [23] Ultrasound SegNet Private dataset
Train = Unknown
Test = Unknown
Unknown
Dangoury et al. [24] Ultrasound V-net Private dataset
Train = 5635
Test = 5508
DSC = 0.8501
Sen = 0.8556
Spe = 0.9987
Acc = 0.9992
Yap et al. [25] Breast CNN Inbreast Total = 410 AUC = 0.94
Sharifzadeh et al. [26] Breast Shift-Invariant Segmentation US breast images dataset
Train = 100
Validation = 30
Test = 33
DSC = 0.94
JI = 0.91
Gare et al. [27] Subcutaneous, Breast W-Net Private dataset
Train = 450
Test = 50
DSC = 0.883
Yin et al. [28] Kidney Pixelwise Classification Networks Private dataset
Total = 918
DSC = 0.959
Torres et al. [29] Kidney BEAS framework Private dataset
Total = 45
DSC = 0.93
Chen et al. [30] Kidney SDFNet Private dataset
Train = 450
Test = 50
DSC = 0.941
Valente et al. [31] Kidney Deep learning method Private dataset
Training = 2166
Validation = 193
Testing = 358
DSC = 0.94
Leclerc et al. [32] heart Deep learning CAMUS Total = 2000 DSC = 0.92
Pu et al. [33] Fetal heart MobileUNet-FPN Private dataset
Train = 575
Validation = 102
Test = 207
DSC = 0.935
Ma et al. [34] Thyroid CNN Private dataset
Total = 352
DSC = 0.901
Li et al. [35] Ovary Follicle Cr-UNet Private dataset
Train = 2509
Test = 695
DSC = 0.9601
Qiu et al. [36] Mouse Embryo Deep Learning Private dataset
Train = Unknown
Test = Unknown
ACC = 0.98

"

Paper Region Method Dataset Performance
Kim et al. [37] Breast cancer Weakly-supervised deep learning method Private dataset
Train = 1000
Test = 400
AUC = 0.86-0.96
Shen et al. [38] Breast cancer Deep learning model NYU Breast Ultrasound Dataset
Train = 3265744
Test = 1632872
Validation = 544291
AUC = 0.976
Sen = 0.918
PPV = 0.38
Niu et al. [39] Breast lesions Grey level gradient cooccurrence Matrix analysis Private dataset
Total = 206
BI-RADS 4A: Acc > 0.9
Zhang et al. [40] Breast lesions Lightweight neural network Private dataset
Train = 5030
Test = Unknown
Validation = 1830
Sen = 0.8925
Spe = 0.9633
Average Pre = 0.85
Qian et al. [41] Breast cancer Deep-learning system Private dataset
Train = 10815
Test = 912
Validation = Unknown
Bimodal US images:
AUC= 0.880
MultimodalUS images:
AUC = 0.920
Baloescu et al. [42] Lung lesions Deep learning automated algorithm Private dataset
Train = 1847
Test = 100
Validation = 468
Sen = 0.93
Spe = 0. 96
Diaz-Escobar et al. [43] Lung lesions, COVID-19 Deep learning architectures POCUS dataset
Train = 2661
Test = Unknown
Validation = 665
Average
Acc = 0.891
Balanced
Acc = 0.893
COVID-19 detection
AUC = 0.971
Fang et al. [44] Lung lesions CNN architectures based on transfer learning Private dataset
Train = 916
Test = Unknown
Validation = Unknown
Clinical diagnosis,
CXR, Chest CT:
Kappa values = 0.943, 0.837, 0.835
Kulhare et al. [45] Lung lesions Single Shot CNN Model Private dataset
Train = 18713
Test = 444
Validation = Unknown
Acc = 0.89
Abdel-Basset et al. [46] Lung lesions, COVID-19 CNN POCUS dataset
Total = 3234
Acc = 0. 934
F1 = 0.931
AUC = 0.97
Choi et al. [47] Thyroid nodule CAD system using AI Private dataset
Train = Unknown
Test = Unknown
Validation = Unknown
Sen = 0.907
Wei et al. [48] Thyroid nodule CNN Private dataset
Train = 5000
Test = 2214
Acc = 0.92
Wang et al. [49] Thyroid nodule YOLOv2 neural network Private dataset
Train = 5007
Test = Unknown
Validation = 351
ROC = 0.902
Sen = 0.905
PPV = 0.9522
NPV = 0.8099
Acc = 0.9031
Spe = 0.8991
Jassal et al. [50] Thyroid nodule AI model Private dataset
Train = 857
Test = 198
Validation = Unknown
Acc = 0.89
Sen = 0.89
Spe = 0.83
F1 = 0.94
AUC = 0.86
Deng et al. [51] Thyroid nodule ResNet50 Random forest Private dataset
Train = 366
Test = 122
Validation = 122
Sen = 0.8587
Spe = 0.9718
Acc = 0.9377
AUC = 0.982
[1] Reddy UM, Filly RA, Copel JA. Prenatal imaging: ultrasonography and magnetic resonance imaging. Obstet Gynecol 2008; 112:145-157.
doi: 10.1097/01.AOG.0000318871.95090.d9 pmid: 18591320
[2] Anas EMA, Seitel A, Rasoulian A, John PS, Pichora D, Darras K, et al. Bone enhancement in ultrasound using local spectrum variations for guiding percutaneous scaphoid fracture fixation procedures. Int J CARS 2015; 10:959-969.
doi: 10.1007/s11548-015-1181-6
[3] Noble JA, Boukerroui D. Ultrasound image segmentation: a survey. IEEE Trans Med Imaging 2006; 25:987-1010.
doi: 10.1109/TMI.2006.877092
[4] Pereira F, Bueno A, Rodriguez A, Perrin D, Marx G, Cardinale M, et al. Automated detection of coarctation of aorta in neonates from two dimensional echocardiograms. J Med Imaging 2017; 4:014502.
doi: 10.1117/1.JMI.4.1.014502
[5] Chen C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. Journal of the American Society for Information Science and Technology 2006; 57:359-377.
doi: 10.1002/(ISSN)1532-2890
[6] Al-Dhabyani W, Gomaa M, Khaled H, Fahmy A. Dataset of breast ultrasound images. Data Brief 2020; 28:104863.
doi: 10.1016/j.dib.2019.104863
[7] Cao Z, Duan L, Yang G, Yue T, Chen Q. An experimental study on breast lesion detection and classification from ultrasound images using deep learning architectures. BMC medical imaging 2019; 19:1-9.
doi: 10.1186/s12880-018-0301-5
[8] Al-Dhabyani W, Gomaa M, Khaled H, Fahmy A. Deep learning approaches for data augmentation and classification of breast masses using ultrasound images. Int. J. Adv. Comput. Sci. Appl 2019; 10:1-11.
doi: 10.3390/app10010001
[9] Han X, Wang J, Zhou W, Chang C, Ying S, Shi J. Deep doubly supervised transfer network for diagnosis of breast cancer with imbalanced ultrasound imaging modalities//Medical Image Computing and Computer Assisted Intervention-MICCAI 2020: 23rd International Conference, Lima, Peru, October 4-8, 2020, Proceedings, Part VI 23. Springer International Publishing; 2020:141-149.
[10] Zhou Y, Chen H, Li Y, Liu Q, Xu X, Wang S, et al. Multi-task learning for segmentation and classification of tumors in 3D automated breast ultrasound images. Medical Image Analysis 2021; 70:101918.
doi: 10.1016/j.media.2020.101918
[11] Badawy SM, Mohamed AENA, Hefnawy AA, Zidan HE, GadAllah MT, El-Banby GM. Automatic semantic segmentation of breast tumors in ultrasound images based on combining fuzzy logic and deep learning—a feasibility study. PLoS One 2021; 16:e0251899.
[12] Bourouis S, Band SS, Mosavi A, Agrawal S, Ahila A, Poongodi M, et al. Meta-heuristic algorithm-tuned neural network for breast cancer diagnosis using ultrasound images. Frontiers in Oncology 2022; 12:834028.
doi: 10.3389/fonc.2022.834028
[13] Jabeen K, Khan MA, Alhaisoni M, Tariq U, Zhang YD, Hamza A, et al. Breast cancer classification from ultrasound images using probability-based optimal deep learning feature fusion. Sensors 2022; 22:807.
doi: 10.3390/s22030807
[14] Ragab M, Albukhari A, Alyami J, Mansour RF. Ensemble deep-learning-enabled clinical decision support system for breast cancer diagnosis and classification on ultrasound images. Biology 2022; 11:439.
doi: 10.3390/biology11030439
[15] Gheflati B, Rivaz H. Vision transformers for classification of breast ultrasound images. Annu Int Conf IEEE Eng Med Biol Soc 2022:480-483.
[16] Ayana G, Park J, Jeong JW, Choe S. A novel multistage transfer learning for ultrasound breast cancer image classification. Diagnostics 2022; 12:135.
doi: 10.3390/diagnostics12010135
[17] Liu T, Guo Q, Lian C, Ren X, Liang S, Yu J, et al. Automated detection and classification of thyroid nodules in ultrasound images using clinical-knowledge-guided convolutional neural networks. Medical image analysis 2019; 58:101555.
doi: 10.1016/j.media.2019.101555
[18] Kuo CC, Chang CM, Liu KT, Lin WK, Chiang HY, Chung CW, et al. Automation of the kidney function prediction and classification through ultrasound-based kidney imaging using deep learning. NPJ digital medicine 2019; 2:29.
doi: 10.1038/s41746-019-0104-2
[19] Roy S, Menapace W, Oei S, Luijten B, Fini E, Saltori. Deep learning for classification and localization of COVID-19 markers in point-of-care lung ultrasound. IEEE Trans Med Imaging 2020; 39:2676-2687.
doi: 10.1109/TMI.42
[20] Xie HN, Wang N, He M, Zhang LH, Cai HM, Xian B J, et al. Using deep-learning algorithms to classify fetal brain ultrasound images as normal or abnormal. Ultrasound Obstet Gynecol 2020; 56:579-587.
doi: 10.1002/uog.21967 pmid: 31909548
[21] Skandha SS, Gupta SK, Saba L, Koppula VK, Johri AM, Khanna NN, et al. 3-D optimized classification and characterization artificial intelligence paradigm for cardiovascular/stroke risk stratification using carotid ultrasound-based delineated plaque: AtheromaticTM 2.0. Comput Biol Med 2020;125103958.
[22] Chen H, Zheng Y, Park JH, Heng PA, Zhou SK, et al. Iterative multi-domain regularized deep learning for anatomical structure detection and segmentation from ultrasound images. IEEE Transactions on Medical Imaging 2019; 38:2514-2524.
[23] Cui W, Meng D, Lu K, Wang L, Zhou X, Li Y, et al. Automatic segmentation of ultrasound images using SegNet and local Nakagami distribution fitting model. Biomedical Signal Processing and Control 2023; 81:104431.
doi: 10.1016/j.bspc.2022.104431
[24] Dangoury S, Sadik M, Alali A, Fail A, Khoury R, Nassar J. V-net performances for 2D ultrasound image segmentation. IEEE 18th International Colloquium on Signal Processing & Applications (CSPA) 2022:96-100.
[25] Yap MH, Pons G, Martí J, Ganau S, Sentís M, Zwiggelaar R, et al. Automated breast ultrasound lesions detection using convolutional neural networks. IIEEE J Biomed Health Inform 2018; 22:1218-1226.
[26] Sharifzadeh M, Benali H, Rivaz H. Shift-invariant segmentation in breast ultrasound images. IEEE International Ultrasonics Symposium (IUS) 2021:1-4.
[27] Gare GR, Li J, Joshi R, Patel S, Kumar V, Shah P, et al. W-Net: Dense and diagnostic semantic segmentation of subcutaneous and breast tissue in ultrasound images by incorporating ultrasound RF waveform data. Medical Image Analysis 2022; 76:102326.
doi: 10.1016/j.media.2021.102326
[28] Yin S, Peng Q, Li H, Gao X, Liu L, Feng S, et al. Automatic kidney segmentation in ultrasound images using subsequent boundary distance regression and pixelwise classification networks. Medical Image Analysis 2020; 60:101602.
doi: 10.1016/j.media.2019.101602
[29] Torres HR, Queirós S, Morais P, Fonseca JC, Vilaça JL, Oliveira C, et al. Kidney segmentation in 3-D ultrasound images using a fast phase-based approach. IEEE Trans Ultrason Ferroelectr Freq Control 2020;68:1521-1531.
[30] Chen G, Dai Y, Li R, Wang J, Wu X, Zhang L, et al. SDFNet: Automatic segmentation of kidney ultrasound images using multi-scale low-level structural feature. Expert Systems with Applications 2021; 185:115619.
doi: 10.1016/j.eswa.2021.115619
[31] Valente S, Ferreira HA, Silva M, Oliveira R, Santos J, Gomes P, et al. A deep learning method for kidney segmentation in 2D ultrasound images. Annu Int Conf IEEE Eng Med Biol Soc 2022: 2022:3911-3914.
doi: 10.1109/EMBC48229.2022.9871748 pmid: 36086291
[32] Leclerc S, Smistad E, Pedrosa J, Østvik A, Cervenansky F, Espinosa F, et al. Deep learning for segmentation using an open large-scale dataset in 2D echocardiography. IEEE Trans Med Imaging 2019;38:2198-2210.
[33] Pu B, Wang Q, Zhang Y, Zhao H, Liu Y, Chen X, et al. MobileUNet-FPN: A semantic segmentation model for fetal ultrasound four-chamber segmentation in edge computing environments. IEEE J Biomed Health Inform 2022; 26:5540-5550.
doi: 10.1109/JBHI.2022.3182722
[34] Ma J, Wu F, Jiang T, Zhao Q, Kong D. Ultrasound image-based thyroid nodule automatic segmentation using convolutional neural networks. Int J Comput Assist Radiol Surg 2018; 13:1685-1697.
doi: 10.1007/s11548-018-1815-6
[35] Li H, Fang J, Liu S, Liang X, Yang X, Mai Z, et al. Cr-UNet: a composite network for ovary and follicle segmentation in ultrasound images. IEEE J Biomed Health Inform 2019; 24:974-983.
doi: 10.1109/JBHI.6221020
[36] Qiu Z, Qin Y, Duan X, Shi Y, Yang X, Qin J, et al. Automatic mouse embryo brain ventricle & body segmentation and mutant classification from ultrasound data using deep learning. IEEE International Ultrasonics Symposium (IUS) 2019:12-15.
[37] Kim J, Kim HJ, Kim C, Lee JH, Kim KW, Park YM, et al. Weakly-supervised deep learning for ultrasound diagnosis of breast cancer. Scientific Reports 2021; 11:24382.
doi: 10.1038/s41598-021-03806-7 pmid: 34934144
[38] Shen Y, Shamout FE, Oliver JR, Witowski J, Kannan K, Park J, et al. Artificial intelligence system reduces false-positive findings in the interpretation of breast ultrasound exams. Nature communications 2021; 12:5645.
doi: 10.1038/s41467-021-26023-2 pmid: 34561440
[39] Niu S, Huang J, Li J, Liu X, Wang D, Zhang RF, et al. Application of ultrasound artificial intelligence in the differential diagnosis between benign and malignant breast lesions of BI-RADS 4A. BMC cancer 2020; 20:1-7.
doi: 10.1186/s12885-019-6169-0
[40] Zhang X, Lin X, Zhang Z, Dong LC, Sun XL, Sun DS, et al. Artificial intelligence medical ultrasound equipment: application of breast lesions detection. Ultrasonic Imaging 2020; 42:191-202.
doi: 10.1177/0161734620928453
[41] Qian X, Pei J, Zheng H, Xie X, Yan L, Zhang H, et al. Prospective assessment of breast cancer risk from multimodal multiview ultrasound images via clinically applicable deep learning. Nat Biomed Eng 2021; 5:522-532.
doi: 10.1038/s41551-021-00711-2 pmid: 33875840
[42] Baloescu C, Toporek G, Kim S, McNamara K, Liu R, Shaw M, et al. Automated lung ultrasound B-line assessment using a deep learning algorithm. IEEE Trans Ultrason Ferroelectr Freq Control 2020; 67:2312-2320.
doi: 10.1109/TUFFC.58
[43] Diaz-Escobar J, Ordóñez-Guillén NE, Villarreal-Reyes S, Galaviz-Mosqueda A, Kober V, Rivera-Rodriguez R, et al. Deep-learning based detection of COVID-19 using lung ultrasound imagery. Plos one 2021; 16:e0255886.
[44] Fang X, Li W, Huang J, Li W, Feng Q, Han Y, et al. Ultrasound image intelligent diagnosis in community-acquired pneumonia of children using convolutional neural network based transfer learning. Front Pediatr 2022; 10:1063587.
doi: 10.3389/fped.2022.1063587
[45] Kulhare S, Zheng X, Mehanian C, Gregory C, Zhu M, Gregory K, et al. Ultrasound-based detection of lung abnormalities using single shot detection convolutional neural networks. In Simulation, Image Processing, and Ultrasound Systems for Assisted Diagnosis and Navigation: International Workshops 2018;pp:65-73.
[46] Abdel-Basset M, Hawash H, Alnowibet KA, Mohamed AW, Sallam KM. Interpretable deep learning for discriminating pneumonia from lung ultrasounds. Mathematics 2022; 10:4153.
doi: 10.3390/math10214153
[47] Choi YJ, Baek JH, Park HS, Shim WH, Kim TY, Shong YK, et al. A computer-aided diagnosis system using artificial intelligence for the diagnosis and characterization of thyroid nodules on ultrasound: initial clinical assessment. Thyroid 2017; 27:546-552.
doi: 10.1089/thy.2016.0372 pmid: 28071987
[48] Wei X, Zhu J, Zhang H, Gao H, Yu R, Liu Z, et al. Visual interpretability in computer-assisted diagnosis of thyroid nodules using ultrasound images. Med Sci Monit 2020; 26:e927007.
[49] Wang L, Yang S, Yang S, Zhao C, Tian G, Gao Y, et al. Automatic thyroid nodule recognition and diagnosis in ultrasound imaging with the YOLOv2 neural network. World J Surg Oncol 2019; 17:1-9.
doi: 10.1186/s12957-018-1541-0
[50] Jassal K, Koohestani A, Kiu A, Strong A, Ravintharan N, Yeung M, et al. Artificial intelligence for pre-operative diagnosis of malignant thyroid nodules based on sonographic features and cytology category. World J Surg 2023; 47:330-339.
doi: 10.1007/s00268-022-06798-1
[51] Deng C, Han D, Feng M, Lv Z, Li D. Differential diagnostic value of the ResNet50, random forest, and DS ensemble models for papillary thyroid carcinoma and other thyroid nodules. J Int Med Res 2022;50.
[52] Fujioka T, Mori M, Kubota K, Kikuchi Y, Katsuta L, Adachi M, et al. Breast ultrasound image synthesis using deep convolutional generative adversarial networks. Diagnostics 2019; 9:176.
doi: 10.3390/diagnostics9040176
[53] Jarosik P, Lewandowski M, Klimonda Z, Byra M. Pixel-wise deep reinforcement learning approach for ultrasound image denoising. 2021 IEEE International Ultrasounds Symposium (IUS) 2021;1-4.
[54] Czajkowska J, Juszczyk J, Piejko L, Glenc-Ambroży M. High-frequency ultrasound dataset for deep learning-based image quality assessment. Sensors 2022; 22:1478.
doi: 10.3390/s22041478
[55] Wang J, Yang X, Zhou B, Sohn JJ, Zhou J, Jacob JT, et al. Review of machine learning in lung ultrasound in COVID-19 pandemic. Journal of Imaging 2022; 8:65.
doi: 10.3390/jimaging8030065
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
[an error occurred while processing this directive]