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Abstract: The study aims to review literatures on ultrasound-based radiomics, including ultrasound modalities, and discusses 
basic methods, applications, and limitations of ultrasound-based radiomics. The search strategy was conducted in form of 
“Radiomics [Title/Abstract] and Ultrasound [Title/Abstract]”in PubMed. The retrieved articles were initially screened via 
abstracts. Then, the main objectives, methods, and achievements of selected articles were summarized. Finally, twenty articles 
focused on malignancies of different organs, such as liver, rectum, breast, and thyroid were included into this review. The multi-
parametric features exhibited a superior diagnostic performance compared with a single modality. Ultrasound-based radiomics 
can assist radiologists to improve the accuracy of diagnosis, and it may promote the development of precision diagnosis and 
treatment of various types of cancer. 
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Introduction
Non-communicable diseases, namely chronic 

diseases, account for the majority of global deaths, 
and as a main category of noncommunicable diseases, 
cancer, is now one of the leading causes of death and the 
most important barrier to increase life expectancy in the 
21st century. According to the statistics presented by the 
World Health Organization (WHO) in 2015, cancer ranks 
the first or second leading cause of death before age 70 
years among 91 countries [1].

Using genomics and proteomics techniques to 
describe molecular characteristics is a hot topic in 

personalized diagnosis and treatment of cancer. However, 
due to the spatiotemporal heterogeneity of tumors, 
genomics and proteomics have limitations. They both 
require the analysis of a small portion of tumor tissues 
by invasive tissue puncture or surgery, and those small 
samples cannot capture the complete characteristics of 
the tumor. Medical imaging, in contrast to genomics 
and proteomics, assesses the characteristics of human 
tissues in a non-invasive manner and is often used in 
tumor diagnosis and treatment in clinical practice [2]. 
Medical imaging is one of the main factors that promote 
medical development and treatment [3]. The key goal 
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of medical imaging is "precision medicine", in which 
treatment is tailored to specific characteristics of patients 
and their disease [4]. Medical imaging can provide more 
comprehensive information about the whole tumor, and 
it can continuously monitor the development trend and 
treatment response of the disease. Therefore, medical 
imaging has great potential to guide the diagnosis and 
treatment of tumors.

In clinical practice, subjective terms such as "massive 
necrosis", "irregular margin", and "enlarged lymph 
node" are often used to describe the tumor tissue. In 
recent years, with the development of image acquisition, 
standardization, and statistical analysis, it is feasible to 
make quantitative analysis objectively and accurately. 

Radiomics refers to the process of extraction and 
analysis of large amounts of advanced quantitative 
imaging features. It allows high-throughput extraction 
of quantitative features used to convert images into 
mineable data [5-7]. Radiomics has been justified to 
provide new perspectives on precision medicine in 
oncologic practice related to disease-free survival (DFS) 
[8-10], metastasis prediction [11-13], and therapeutic 
response assessment [14-16].

Although radiomics has shown promising results, 
it still faces limitations and challenges, such as 
heterogeneous study population, limited study samples, 
and lack of verified samples. Thus, for promoting the 
application of radiomics to the routine clinical practice, 
further researches need to be conducted to overcome the 
existing limitations and challenges.

Ultrasound possesses the advantages of no radiation, 
easy to carry out, which has become an integral part of 
medical practice [17], while a limited number of scholars 
have concentrated on ultrasound-based radiomics. 
This review aimed to analyze literature on ultrasound-
based radiomics, including ultrasound modalities, and 
discuss basic methods, applications, and limitations of 
ultrasound-based radiomics.

Definition of Radiomics
Radiomics is the process of extraction and analysis 

of large amounts of advanced quantitative imaging 
features with high throughput from medical images, 
such as computed tomography (CT), positron emission 
tomography (PET), and magnetic resonance imaging 
(MRI). The hypothesis is that quantitative analysis of 
medical imaging can provide more information than 
the qualitative description using naked eyes [18]. The 
radiomics process contains imaging acquisition, ROI 
segmentation, feature extraction, selection, and model 
establishment. 

Methods and Applications of Ultrasound-
Based Radiomics

Ultrasound-based radiomics for liver cancer
Six studies have reported ultrasound-based radiomics 

models for liver cancer, which focused on the prediction 
of microvascular invasion [17,19], assessment of hepatic 
fibrosis[20,21], evaluation of biological characteristics of 
intrahepatic cholangiocarcinoma [22], and preoperative 
prediction of hepatocellular carcinoma (HCC) [23].

HCC is one of the most common hepatic tumors, 
accounting for nearly 90% of primary liver cancer 
cases, and it is the second leading cause of cancer-
related death worldwide [24]. Recurrence occurs in 
almost half of the patients within 2 years after surgery, 
and it has become the major cause of mortality [25]. 
Microvascular invasion (MVI) is defined as the presence 
of micrometastatic emboli within the vessels of the 
liver [26]. MVI was proved to be an important factor 
for predicting early recurrence and evaluating overall 
survival [27]. Preoperative prediction of MVI based on 
radiomics has markedly attracted scholars’ attention. Hu 
et al. developed an ultrasound-based radiomics score for 
preoperative prediction of MVI in HCC, and it was found 
that radiomics scores, alpha-fetoprotein (AFP), and 
tumor size were independent biomarkers of MVI [17,19]. 
The radiomics nomogram based on these three factors 
showed superior performance with area under the curve 
(AUC) value of 0.731 than the clinical nomogram (AUC, 
0.634). Their findings concluded that the radiomics score 
combined with clinical factors could predict the MVI. 
Dong et al. also conducted a study aiming to predict 
the MVI in HCC lesions. The major difference between 
these two researches is that Dong et al. calculated three 
ultrasound feature maps of the original radio frequency 
(ORF) signals using signal analysis and processing (SAP) 
[19]. Their results revealed that imaging performance 
based on ORF was beyond that based on grayscale 
images. 

Liver fibrosis and cirrhosis are growing health 
problems with rising mortality worldwide. Li et al. used 
multi-parametric ultrasound data including conventional 
radiomics, original radiofrequency, and contrast-
enhanced micro-flow (CEMF) to evaluate liver fibrosis 
[21]. Pairwise correlation and hierarchical clustering 
were undertaken to select features. The performance 
of ultrasound-based radiomics models combined with 
the selected features was evaluated by AUC. Their 
outcomes showed that ORF and CEMF features had 
superior performance than conventional radiomics for 
staging liver fibrosis. Besides, CEMF and ORF exhibited 
the greatest diagnostic value for the activity stage 
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and steatosis stage, respectively. The model of multi-
parametric features unveiled a better performance than 
a single modality in classifying fibrosis. D’Souza et al. 
quantitatively analyzed computer-extracted features 
of B-mode ultrasound (BMUS) as a non-invasive tool 
to characterize hepatic fibrosis [20]. They extracted 
quantitative features, including heterogeneity, anisotropy, 
hepatorenal index, and echo intensity. Their results 
uncovered that BMUS imaging can be used in clinical 
settings as an accurate non-invasive method for fibrosis 
assessment.

Yao et al. established a radiomics-based analysis 
system for the diagnosis and clinical behavior prediction 
of HCC based on multi-parametric ultrasound imaging, 
including BMUS, shear wave elastography (SWE), and 
shear wave viscosity (SWV) imaging [23]. Besides, 2,560 
features were extracted from the multi-modal ultrasound 
images for each patient. They used sparse representation 
theory (SRT) and support vector machine (SVM) to 
establish a prediction model for classification of benign 
and malignant focal liver lesions (FLLs), pathologic 
diagnosis of HCC, and clinical prognostic prediction. 
Their results showed that the performance of each model 
was improved when the viscosity was included and 
multi-modal ultrasound images could be used to evaluate 
clinical prognosis and differential diagnosis.

Peng et al .  used ultrasound-based radiomics 
to assess the biological behaviors of intrahepatic 
cholangiocarcinoma (ICC) in a noninvasive manner 
[22]. It was demonstrated that radiomics signatures 
with moderate efficiency are helpful for predicting the 
biological behaviors of ICC noninvasively.

Ultrasound-based radiomics for breast cancer
Breast cancer is one of the most frequent cancer 

among women, with the greatest number of cancer-
related deaths [28].  Five studies have reported 
ultrasound-based radiomics models related to breast 
cancer. Those studies mainly focused on the prediction 
of biological behavior in invasive ductal carcinoma (IDC) 
[29] , the differential diagnosis between triple-negative 
breast cancer and fibroadenoma [30], differentiation of 
benign and malignant breast tumors [31,32], and the 
diagnosis of axillary lymph node metastasis in early-
stage IDC.

IDC is one of the most common types of breast 
cancer, accounting for almost 80% of breast cancer [33]. 
Guo et al. evaluated the relationship between ultrasound 
features and biological behavior in 215 patients with 
IDC using the radiomics approach [29]. The tumors 
were automatically segmented by a phase-based active 
contour model. The high-throughput radiomics features 
were designed and extracted based on Breast Imaging-

Reporting and Data System (BI-RADS), and further 
selected according to t-test, inter-feature coefficients, 
and a least absolute shrinkage and selection operator 
(LASSO) regression model. The SVM classifier with 
three-fold-cross-validation was used to evaluate the 
relationship. The results showed that hormone receptor 
positive and human epidermal growth factor-2 (HER-2)-
negative tumors have different ultrasound features from 
triple-negative breast cancer (TNBC).

TNBC does not express the estrogen receptor (ER) 
and progesterone receptor (PR) or overexpress HER-
2 [34]. TNBC accounts for 20% of all the breast cancer 
cases and has the highest rate of recurrence and the worst 
prognosis [35]. Lee et al. distinguished TNBC from 
fibroadenoma using ultrasound texture features [30]. 
Their cohort study population included 715 fibroadenoma 
and 186 TNBC patients who were confirmed by 
pathology. A total of 730 radiomics features, including 
14 intensity-based features, 132 textural features, and 
584 wavelet-based features, were extracted. They 
developed the radiomics score by using penalized 
logistic regression with a LASSO model from those 730 
extracted features. The findings unveiled that a radiomics 
score based on ultrasound texture analysis presented a 
high diagnostic performance in the differential diagnosis 
of fibroadenoma from TNBC.

Li  e t  a l .  deve loped  a  rad iomics  approach , 
leveraging multimodal ultrasound images to improve 
the classification accuracy of breast tumors. B-mode 
ultrasound, SWE, and contrast-enhanced ultrasound 
images of 178 patients with 181 tumors (67 malignant 
and 114 benign) were included [32]. A total of 1,226 
radiomics features were extracted and analyzed with 
attribute bagging. The results indicated that radiomics 
with attribute bagging combined with multimodal 
ultrasound images has the potential to be used for 
accurate diagnosis of breast tumors.

Luo et al. developed a nomogram combined with 
ultrasound-based radiomics and the BI-RADS for 
distinguishing benign from malignant breast tumors 
[31]. A total of 315 patients confirmed by postoperative 
pathology were included in the cohort study. 1,044 
radiomics features were extracted from each ROI. 
Additionally, LASSO method was used to select features, 
and the radiomics score was calculated for each patient 
using 9 potential features. Their results showed that the 
nomogram combining the radiomics score and the BI-
RADS category was potentially helpful for predicting 
breast malignancy.

Yu et al. established a radiomics nomogram integrating 
clinical factors and radiomics features from ultrasound 
for the preoperative diagnosis axillary lymph node 
status in patients with early-stage invasive breast cancer 
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(EIBC) [36] . A total of 426 EIBC patients confirmed by 
postoperative pathology were included in the cohort study. 
Besides, 96 radiomics features were extracted from each 
ultrasound image, and 14 features were selected using a 
LASSO logistic regression model. Their outcomes showed 
that ultrasound-based radiomics could predict axillary 
lymph node metastasis in breast cancer.

Ultrasound-based radiomics for rectal cancer
In recent years, rectal cancer has ranked among the top 

five common types of cancer, and it is the fifth leading 
cause of cancer-related deaths universally [37]. Three 
studies have reported radiomics models related to rectal 
cancer. Those researches focused on the prediction of 
tumor deposits [38], lymph node metastasis [39], and the 
diagnosis of gastrointestinal stromal tumors (GISTs) [40].

Tumor deposits are defined as focal aggregates of 
adenocarcinoma located in the pericolic or perirectal fat 
discontinuous with the primary tumor and unassociated 
with a lymph node [41]. Chen et al. predicted tumor 
deposits using a machine learning-based ultrasound 
radiomics model [38]. One hundred and twenty seven 
patients with rectal cancer were prospectively enrolled, 
and endorectal ultrasound and SWE data were collected 
for each patient. A total of 4,176 features were extracted, 
and LASSO method was used to reduce features, 
and then, a single-layer artificial neural network was 
constructed. Their outcomes revealed that ultrasound 
radiomics could accurately predict tumor deposits before 
therapy.

Predicting the nodal status of rectal tumors has 
remained challenging [42]. Chen et al. established a 
multi-parametric radiomics of the rectal tumor for the 
preoperative prediction of lymph node metastasis[39]. 
Moreover, 115 consecutive patients with rectal cancer 
were enrolled, and endorectal ultrasound, CT, and SWE 
data were collected for each patient. LASSO method 
was applied to reduce the dimension of the radiomics 
features, and the number of risk predictors of endorectal 
ultrasound, CT, and SWE was 3, 6, and 7, respectively. 
The risk predictors were verified by multivariate logistic 
regression combined with clinical data. The findings 
demonstrated that all three scores were higher in patients 
with lymph node metastasis than those in patients 
with negative lymph metastasis, and multi-parametric 
radiomics could predict lymph metastasis preoperatively, 
with better accuracy compared with conventional 
radiomics.

GISTs account for only approximately 1-3% of all 
gastrointestinal tumors, although rare, they are the most 
common mesenchymal tumors of the gastrointestinal 
tract [43]. Li et al. proposed a radiomics method to 
differentiate GISTs of the higher-risk group from the 

lower-risk group on endoscopic ultrasound images[40]. 
For this purpose, 168 higher-risk patients and 747 lower-
risk patients with GISTs were prospectively enrolled 
from 19 hospitals. A total of 439 radiomics features were 
extracted from endoscopic ultrasound images of each 
patient. LASSO method with 10-fold cross-validation was 
used to reduce the dimension of the radiomics features, 
and the random forest algorithm was applied to establish 
the prediction model. The outcomes showed that the 
radiomics model could enhance preoperative diagnostic 
accuracy. 

Ultrasound-based radiomics for thyroid cancer
Thyroid cancer has ranked ninth in incidence, and its 

etiology has not been well understood [37]. In China, the 
incidence of thyroid carcinoma has been reported as 9.0 
per 10,000, with a mortality rate of 6.8 per 100,000 [44]. 
Four studies have assessed radiomics models related to 
thyroid cancer. These studies focused on prediction of 
malignancy [45], lymph node metastasis [46,47], and 
DFS [48].

Sonographic features, such as micro-calcification, 
solid composition, taller shape, and irregular margin 
are considered as typical features for papillary thyroid 
carcinoma (PTC)[49,50]. Liang et al. developed 
an ultrasound-based radiomics score to predict the 
probability for malignancy of thyroid nodules compared 
with Thyroid Imaging, Reporting and Data System (TI-
RADS) scoring criteria [45]. Two hundred and thirty-two 
patients with pathologically proven thyroid nodules were 
prospectively enrolled from two hospitals. A total of 
1,044 radiomics features were extracted from ultrasound 
images of each patient. LASSO method was used to 
reduce the dimension of the radiomics features, and 19 
features were eventually detected as potential predictors. 
The univariate logistic regression analysis was applied to 
establish a prediction model based on the radiomics score 
and the TI-RADS score. The results showed that the 
radiomics score outperformed in predicting malignancy 
of thyroid nodules than TI-RADS.

PTC is the most common malignant neoplasm of the 
thyroid, accounting for the majority of patients diagnosed 
with thyroid cancer [51]. Park et al. developed an 
ultrasound-based radiomics signature to estimate DFS in 
patients with PTC[48]. They recruited 768 patients with 
PTC. A total of 730 radiomics features were extracted. 
LASSO method with 10-fold cross-validation was used 
to reduce the dimension of the radiomics features, and 40 
features were used to calculate the radiomics score. Their 
outcomes showed that ultrasound-based radiomics could 
be used for risk stratification in patients with PTC.

Lymph node metastasis is the most related risk factor 
for recurrence, and assessment of lymph node metastasis 
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is of great clinical significance. However, there were 
no discriminative ultrasound features to estimate the 
status of lymph node metastasis[52]. Liu et al. developed 
the ultrasound-based radiomics to evaluate the status 
of lymph node metastasis [46,47]. In 2018, they 
investigated whether the application of multi-modality 
images including BMUS and strain elastography can 
improve the discriminability of thyroid tumors with 
lymph node metastasis based on a radiomics approach. 
A total of 684 ultrasound-based radiomics features were 
extracted, and a sparse representation coefficient-based 
feature selection method with 10-bootstrap was used to 
reduce the dimension of radiomics features. The SVM 
was applied to construct the prediction model. The results 
showed that multi-modality images can improve the 
accuracy required for estimation of the status of lymph 
node metastasis for PTC patients. In 2019, they collected 
ultrasound images of 445 patients with PTC to predict 
the status of lymph node metastasis. Six hundred and 
fourteen ultrasound-based features were extracted, and 
SVM classifier was employed to build and validate the 
prediction model. Their findings showed that ultrasound-
based radiomics could noninvasively predict the status of 
lymph node metastasis for PTC patients.

Future Directions 
Radiomics refers to the extraction of high-throughput, 

quantitative features from clinical images, radiogenomics 
can explore the underlying relations between radiomic 
features at the tissue scale and molecular features at 
the genomic, transcriptomic, or proteomic level. In the 
future, radiogenomics could be the future direction and 
it will discover useful biomarkers to improve clinical 
decision-making and precision medicine.

Conclusions
Ultrasound-based radiomics has accomplished great 

advancements in the precision diagnosis and treatment of 
cancer, which mainly focused on malignancies of various 
organs, including liver, breast, rectal, and thyroid. The 
multi-parametric features exhibited a superior diagnostic 
performance than a single modality. The radiomics will 
positively assist radiologists to improve the accuracy of 
diagnosis. 
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