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Objective: This study evaluated the performance of automated machine-learning to diagnose non-alcoholic fatty liver disease 
(NAFLD) by ultrasound and compared these findings to radiologist performance.

Methods: 96 patients with histologic (33) or proton density fat fraction MRI (63) diagnosis of NAFLD and 100 patients without 
evidence of NAFLD were retrospectively identified. The “Fatty Liver” label included 96 patients with 405 images and the 
“Not Fatty Liver” label included 100 patients with 500 images. These 905 images made up a “Comprehensive Image” group. 
A “Radiology Selected Image” group was then created by selecting only images considered diagnostic by a blinded radiologist, 
resulting in 649 images. Cloud AutoML Visionbeta (Google LLC, Mountain View, CA) was used for machine learning. The 
models were evaluated against three blinded radiologists.

Results: The “Comprehensive Image” group model demonstrated a sensitivity of 88.6% (73.3–96.8%) and a specificity of 95.3% 
(84.2–99.4%). Radiologist performance on this image group included a sensitivity of 81.0% (74.3–87.6%) and specificity of 
86.0% (72.6–99.5%). The model’s overall accuracy was 92.3% (84.0–97.1%), compared with mean individual performance 
(83.8%, 78.4–89.1%). The “Radiology Selected Image” group model demonstrated a sensitivity of 88.6% (73.3 – 96.8%) and 
specificity of 87.9% (71.8–96.6%). Mean radiologist sensitivity was 92.4% (86.9–97.9%) and specificity was 91.9% (83.4–100%). 
The model’s overall accuracy was 88.2% (78.1–94.8%) which was comparable to the individual radiologist performance (92.2%, 
90.1–94.2%) and consensus performance (95.6%, 87.6–99.1%).

Conclusions: An automated machine-learning algorithm may accurately detect NAFLD on ultrasound. 
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Non-alcoholic fatty liver disease (NAFLD) is 
defined as the presence of hepatic steatosis not 
attributable to other causes of liver dysfunction, 

including alcoholic liver disease, viral hepatitis, and 
hemochromatosis. NAFLD may be present without 
inflammation (non-alcoholic fatty liver, or NAFL) or 
with inflammation (non-alcoholic steatohepatitis, or 
NASH). Variable levels of fibrosis up to frank cirrhosis 
may be present. Importantly, NAFLD is now the leading 

cause of chronic liver disease in the U.S, representing up 
to 75.1% of cases with an overall prevalence as high as 
11.0% [1, 2].

The diagnosis of NASH is complicated due to a 
lack of consensus on the role of laboratory findings, 
imaging, and histopathology from biopsy. The magnitude 
of liver function test (LFT) abnormalities does not 
correlate with degree of inflammation or fibrosis [3]. 
Additionally, the absence of LFT elevations does not 



177

exclude the presence of NAFLD. Imaging modalities 
for diagnosis include computed tomography (CT), 
magnetic resonance imaging (MRI), and ultrasound. CT 
has a sensitivity of 50% and specificity of 83% in the 
detection of NAFLD, but radiation concerns may limit 
routine use [4]. MRI performs better with a sensitivity of 
88% and specificity of 63% [4]. The use of in- phase and 
out-phase sequences on MRI may be used to improve 
test statistics with a sensitivity and specificity of 95% 
and 98% respectively by quantifying degree of hepatic 
steatosis [5, 6]. However, lack of access, high cost, and 
contraindications related metallic implants are prevalent. 
While liver biopsy is considered the gold-standard, the 
test is invasive and typically reserved for patients with an 
unclear diagnosis.

Ultrasound may be used to screen for significant 
steatosis in patients with NAFLD, with a sensitivity up 
to 85% and specificity of up to 94% respectively [7]. 
However, this sensitivity decreases to as low as 49% in 
the presence of morbid obesity [8]. Fatty liver may be 
diagnosed sonographically by hepatic hyperechogenicity 
relative to the renal cortex and spleen, ultrasound wave 
attenuation with a loss of diaphragm definition, poor 
delineation of the intrahepatic architecture, and a loss of 
echogenic fat within portal triads [7]. Compared with CT 
and MRI, ultrasound is less expensive, readily available, 
faster, and portable. There are no concerns with 
claustrophobia, radiation, or metallic contraindications. A 
reliable ultrasound approach to screen for NAFLD would 
be beneficial for early diagnosis. We hypothesize that a 
trained deep-learning model can diagnose NAFLD by 
ultrasound accurately.

Materials and Methods
Data (ultrasound images) for this institutional 

review board (IRB) approved study for model training, 
validation, and testing purposes were extracted from 
our institutional Picture Archiving and Communication 
(PACS) system in a retrospective fashion via consecutive 
sampling. Informed consent was waived by our local 
ethics board as this study only utilized retrospective 
data. A binary classification system was created for 
labelling purposes: “Fatty Liver” and “Not Fatty Liver.” 
Images were processed using Cloud AutoML Visionbeta 
(Google LLC, Mountain View, CA) for model training 
and evaluation. This is a cloud-based freeware program 
available for Beta testing. Per the product guidelines, at 
least 100 – 500 images per label is recommended.

Ultrasound images were originally created on a 
variety of scanners including a GE Logiq 9 and E9 (GE 
Healthcare), an IU22 and Epiq 7 (Philips), and an Aplio 
500 and i800 (Cannon). The “Fatty Liver” label consisted 
of ultrasound pictures from patients identified either by 
tissue histology via liver biopsy or after fat quantification 
by MRI. Fat quantification was performed using proton 
density fat fraction (PDFF) on one of two Optima 
MR450W 1.5T scanner using Ideal IQ (GE Healthcare). 
Patients with histological confirmation of NAFLD were 
selected from patients identified via PACS undergoing 
ultrasound-guided liver biopsy for a presumed diagnosis 
of NAFLD or NASH. As many images of each patient 
as considered representative and unique were extracted. 
Patients with an MRI fat quantification diagnosis of 
NAFLD were selected from patients identified via PACS 
undergoing MRI with fat quantification greater than 6.4% 
with a diagnostic ultrasound available within the prior 6 
months [9]. A goal of 5 pictures per patient was predicted 
to be extracted with a total label goal of between 100 – 
500 images. Inclusion and exclusion criteria for the “Fatty 
Liver” label is further detailed in Table 1.

Table 1 Inclusion and exclusion criteria for patients within the “Fatty Liver” label 

Inclusion Criteria Exclusion Criteria

Histologic diagnosis of NAFLD (NASH or hepatic steatosis) after liver 
biopsy or MRI with fat quantification > 6.4% AND

Diagnostic ultrasound within 6 months TIPS

Retrievable through the PACS system Hemochromatosis or hemosiderosis with an iron content > 2.0 mg Fe / g 
Liver

Age > 18 Alcoholic hepatitis or uncontrolled viral hepatitis

Hepatocellular carcinoma or hepatic adenoma

Systemic hepatobiliary pathology (PBC, PSC, autoimmune hepatitis)

The “Not Fatty Liver” label consisted of ultrasound 
images from patients identified retrospectively through 
PACS system after undergoing a right upper quadrant 

ultrasound or abdominal ultrasound for a variety of 
indications with a normal liver function panel and 
without ultrasound findings of hepatic steatosis, chronic 
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hepatitis, or other acute pathologic findings. Importantly, 
patients with type II diabetes mellitus were excluded 
from the “Not Fatty Liver” label to limit the inclusion of 
sub-clinical or undiagnosed NAFLD. However, because 
clinically patients within this label were not considered 

to necessarily be at risk for NAFLD, most did not have 
confirmatory MRI fat quantification or tissue histology. 
Inclusion and exclusion criteria for the “Not Fatty Liver” 
label is further detailed in Table 2. A goal of 5 unique 
images per patient was predicted.

Table 2 Inclusion and exclusion criteria for patients within the “Not Fatty Liver” label 

Inclusion Criteria Exclusion Criteria

Right upper quadrant or abdominal ultrasound Abnormal liver function panel

No sonographic findings of hepatic steatosis Alcoholic hepatitis or uncontrolled viral hepatitis

No acute pathologic findings present on examination Hepatocellular carcinoma or hepatic adenoma

Retrievable through the PACS system Increased renal echogenicity or hydronephrosis

Age > 18 Biliary dilatation or other biliary abnormality

Cholecystectomy or other hepatobiliary operation within the last 6 months

Systemic hepatobiliary pathology (PBC, PSC, autoimmune hepatitis)

Clinical diagnosis of possible NAFLD

Type II diabetes mellitus

Images were subsequently cropped in a manual 
fashion by a non-radiologist to only include the 
ultrasound image to eliminate nondiagnostic image 
annotations. Samples of cropped images within the 
“Fatty Liver” label and within the “Not Fatty Liver” 
label are provided in Figure 1. This set of images was 
considered the “Comprehensive Image Group.” An 
independent board-certified radiologist (H.N with 3 
years of experience and who did not serve as a blinded 
reader) then reviewed all images and selected images 
considered technically adequate for diagnosis to produce 
the “Radiology Selected Image” group. Both image 
groups were independently uploaded to Cloud AutoML 
Visionbeta for model creation, optimization, and analysis.

learning. Of note, this product is within the beta launch 
stage. Image groups were sampled randomly by AutoML 
into a training set (roughly 80%), validation set (roughly 
10%), and test set (roughly 10%); this was performed 
separately for both the “Comprehensive Image” group 
and “Radiology Selected Image” group. The training 
set is used for model training and the validation set is 
used for internal hyper- parameter optimization. The 
final test set (for which the model is naïve to) is used 
for evaluation of the model and for comparison against 
expert analysis.

The test set from the “Comprehensive Image” group 
was first used for blinded interpretation and assessment 
by three-independent board-certified radiologists with no 
additional clinical information available. After at least 
one month (to limit recall bias), these same radiologists 
were presented the test set from the “Radiologist 
Selected Image” group. The only interpretation that 
was asked of the radiologists during each assessment 
is whether they would make the diagnosis of hepatic 
steatosis. Sensitivity, specificity, positive predictive 
value (PPV), negative predictive value (NPV), and 
overall accuracy was subsequently calculated for the 
model as well as for the mean statistics of three blinded 
readers (L.N, A.L, and P.OK, each with at least 15 years 
of experience in ultrasound) for comparison against the 
gold standard label assignment; tissue histology or MRI 
fat quantification for the “Fatty Liver” label and a lack of 
any clinical data suggesting NAFLD required for the “Not 
Fatty Liver” label.

Cloud AutoML Visionbeta allows for the creation 
of custom models trained on uploaded images using a 
convolutional neural network pre-trained through transfer 

Figure 1 Panel A demonstrates B-Mode hepatic ultrasound of a patient 
with known NAFLD. Panel B demonstrates B-mode hepatic ultrasound of 
a patient without clinical evidence of NAFLD. The gallbladder is partially 
within view in both windows.

C D
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Demographic data (age, gender, and body mass 
index as calculated per National Institute of Health) was 
pooled per image group and compared among labels [10]. 
Independent sample t-test and chi-square analysis was 
performed on SPSS v25 (IBM, Armonk, New York). Test 
metrics were calculated on Excel (Microsoft, Redmond, 
WA). Clopper-Pearson confidence interval was 
calculated for non-mean test metrics. A p-value of 0.05 
was designated as significant when utilized. Performance 
metrics are presented as means with 95% confidence 
intervals (CI).

Results
Figure 2 diagrams the flow of enrolled patients and 

ultrasound images. Patients within the “Fatty Liver” label 
came from two sources from PACS: tissue histology  
(N = 33 patients, 102 pictures) and MRI fat quantification 
(N = 63 patients, 303 pictures), resulting in a total of 
405 pictures. The “Not Fatty Liver” label consisted of a 
total of 100 patients with 500 ultrasound pictures. Thus, 
the “Comprehensive Image” group consists of a total of 

905 pictures. From this, the “Radiology Selected Image” 
group consisted of a total of 649 images (292 within the 
“Fatty Liver” label and 357 from the “Not Fatty Liver” 
label).

Univar ia te  ana lys i s  o f  pa t i en t s  wi th in  the 
“Comprehensive Image” group and “Radiology Selected” 
group as stratified per “Fatty Liver” label and “Not 
Fatty Liver” label is detailed in Table 3. Within both 
image groups, patients with the “Fatty Liver” label had a 
statistically significantly higher BMI compared with the 
“Not Fatty Liver” label (P < 0.0001 in both). The mean 
BMI of patients designated with the “Not Fatty Liver” 
label within both the “Comprehensive Image” group 
(28.3 ± 7.7) and “Radiology Selected Image” group  
(28.0 ± 7.6) fell within the National Institutes of Health 
BMI stratification as “overweight” (BMI 25 – 30)[10]. In 
contrast, the mean BMI of patients with the “Fatty Liver” 
label within both the “Comprehensive Image” group 
(34.5 ± 7.2) and “Radiology Selected Image” group  
(34.6 ± 6.7) fell within the National Institutes of Health 
BMI stratification as “obese” (BMI 30+)[10].

Label assignment

Group assignment

Analysis

Recruitment
No evidence of NAFLD

Not Fatty Liver Fatty Liver

MRI fat quantification

-“Fatty Liver” label: 405 images
-“Not Fatty Liver” label: 500 images

-“Fatty Liver” label: 292 images
-“Not Fatty Liver” label: 357 images

- Training Set: 725 images
- Validation Set: 102 images
- Test Set: 78 images

- Training Set: 525 images
- Validation Set: 59 images
- Test Set: 68 images

Comprehensive images

Radiology Selected images

Clound AutoML Vision Clound AutoML Vision

Blinded observer interpreation Blinded observer interpreation

Tissue histology

-100 patients
-500 images

-63 patients
-303 images

-33 patients
-102 images
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Additionally, the median hepatic steatosis grade by 
pathology for patients within the “Fatty Liver” label 
in both image groups was grade 2 moderate steatosis 
(33 – 66% of the examined histologic sample surface 
area visually determined to be involved by steatosis) 
[11]. The mean fat quantification percentage by PDFF 
MRI in patients with the “Fatty Liver” label within 
the “Comprehensive Image” group (17.3% ± 8.0) and 
“Radiology Selected Image” group (16.9% ± 7.8) both 
fell within the range of grade 1 (6.5 – 17.4%) mild 
hepatic steatosis but approached grade 2 (17.5 – 22.1%) 
moderate hepatic steatosis [9].

Randomized sampling of each image group was 
performed from within the Cloud AutoML Visionbeta 
API for model testing, validation, and testing. Within the 
“Comprehensive Image” group, 725 images were used 
for training, 102 images were used for validation, and 
78 images were used for testing. Within the “Radiology 
Selected Image” group, 525 images were used for 
training, 59 images were used for validation, and 68 
images were used for testing.

Furthermore, because these sets were populated 
randomly, the testing set for the “Comprehensive Image” 
group is different from the testing set in the “Radiology 
Selected Image” group; as are the corresponding 
training and validation sets. The model produced from 
the “Comprehensive Image” group performed with a 
sensitivity of 88.6% (95% CI = 73.3 – 96.8%) and a 
specificity of 95.3% (95% CI = 84.2 – 99.4%) for the 
detection of NAFLD. Similarly, PPV and NPV was 
93.9% (95% CI = 79.9 – 98.4%) and 91.1% (95%  
CI = 80.3 – 96.3%), respectively. The overall accuracy 

of the model was 92.3% (95% CI = 84.0 – 97.1%). 
Comparatively, the board-certified ultrasound trained 
radiologists performed with a mean sensitivity of 81.0% 
(95% CI = 74.3 – 87.6%), mean specificity of 86.0% 
(95% CI = 72.6 – 99.5%), mean PPV of 84.6% (95% 
CI = 72.4 – 96.7), and mean NPV of 85.1% (95% CI = 
81.8 - 88.3%). A calculated Fleiss kappa score of inter-
observability demonstrates moderate agreement at 0.636. 
Test metrics with a 95% CI are detailed in Table 4.

The model produced from the “Radiology Selected 
Image” group performed with a sensitivity of 88.6% 
(95% CI = 73.3 – 96.8%), specificity of 87.9% (95% CI =  
71.8 – 96.6%), PPV of 88.6% (95% CI = 75.4 – 95.1%) 
and NPV of 87.9% (95% CI = 74.1 – 94.8%). The overall 
accuracy of the model is 88.2% (95% CI = 78.1 – 94.8%). 
The radiology group performed with a mean sensitivity of 
92.4% (95% CI = 86.9 – 97.9%), mean specificity of 91.9 
% (95% CI = 83.4 – 100%), mean PPV of 93.1% (95% 
CI = 86.1% – 100), and mean NPV of 92.4% (95% CI = 
87.8 – 97.0%). A calculated Fleiss kappa score of inter-
observability demonstrates improved agreement at 0.784. 
Test metrics with a 95% CI are detailed in Table 4.

As a secondary analysis, test statistics for consensus 
read by the radiology group were calculated for each 
image group. That is, the more common diagnosis made 
by the three radiologists for each test image was selected 
as the final interpreting diagnosis and compared against 
the true label. Within the “Comprehensive Image” 
group, a sensitivity of 88.6% (95% CI = 73.3 – 96.8%), 
specificity of 93.0% (95% CI = 80.9 – 98.5%), PPV of 
91.2% (95% CI = 71.5 – 96.9%) and NPV of 90.9% (95% 
CI = 79.9 – 96.2%) was reported.

Table 3 Univariate analysis of patients enrolled in each image group 

Item “Comprehensive Image” group “Radiology Selected Image” group

Label “Not Fatty Liver” “Fatty Liver” P value “Not Fatty Liver” “Fatty Liver” P value

Mean Age 44.5 (± 16.7) 50.5 (± 13.3) 0.006 44.1 (± 16.7) 51.0 (± 13.3) 0.002

Gender 29.0% male 40.6% male 0.087 29.2% male 44.4% male 0.035

Mean BMI 28.3 (± 7.7) 34.5 (± 7.2) a 0.001 28.0 (± 7.6) 34.6 (± 6.7) c 0.001

Median Steatosis Grade by Histology NA 2 (N = 31 pts) b NA NA 2 (N = 21 pts) d NA

Mean % Fat by MRI NA 17.3% (± 8.0)
(N = 63 pts)

NA NA 16.9% (± 7.8)
(N = 60 pts)

NA

a 6 patients omitted due to no recorded BMI within a year of evaluation; b 2 patients omitted due to no reported hepatic steatosis grade in pathology;  
c 5 patients omitted due to no recorded BMI within a year of evaluation; d 2 patients omitted due to no reported hepatic steatosis grade in pathology

Within the “Radiology Selected Image” group, 
a sensitivity of 97.1% (95% CI = 85.1 – 99.9%), 
specificity of 93.9% (95% CI = 79.8 – 99.3%), PPV of 

94.4% (95% CI = 81.6 – 98.5%), and NPV of 96.9% 
(95% CI = 81.8 – 99.5%). Test metrics with a 95% CI 
are detailed in Table 4.
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Discussion
The early and accessible diagnosis of NAFLD is 

important, especially given its increasing prevalence and 
potential for irreversible hepatic injury. As a modality, 
ultrasound is well poised to meet this clinical need. To 
this end, machine learning may have the potential to 
accurately and automatically assist in making an NAFLD 
diagnosis on B-mode ultrasound.

The model produced by the “Comprehensive 
Image” group performed with a sensitivity 88.6% and 
specificity 95.3% that was comparable to that of three 
board-certified ultrasound trained radiologists. Even 
after selection of only images considered diagnostic 
by an independent radiologist (the model produced 
by the “Radiology Selected Image” group), the model 
performance remained comparable. It is possible that by 
explicitly selecting for images considered diagnostic by 
a trained radiologist, the “Radiology Selected Image” 
group is now implicitly biased towards improving the 
ability of observers to detect NAFLD. However, even 
despite this, the model still performed well, with an 
overall accuracy of 88.2%.

As a secondary analysis, test statistics utilizing 
consensus ultrasound interpretation was calculated 
(Table 4). As expected, all four parameters (sensitivity, 
specificity, PPV, and NPV) improved with consensus 
compared with independent mean test statistics in 
both image groups (though remained comparable 
within a 95% confidence interval). This suggests that 
observer interpretation accuracy may be improved when 
pooled across the experience of multiple experienced 
radiologists. To that end, the potential for improvement 
in model performance still exists.

Machine-learning for sonographic decision support 
in the diagnosis of NAFLD is an active area of research, 
with accuracies between 80 – 98% reported [12]. 
However, limitations in methodologies exist including 
low label sizes and limited feature dimensionality. 
Alternative transfer learning neural network algorithms 
with manual hyperparameter optimization have been 
applied to the assessment of hepatic steatosis [13]. Cloud 
AutoML Visionbeta and other automated hyperparameter 
optimization protocols provide the advantage of rapidly 
and automatically optimizing the model per the user’s 
application.

Machine learning presents a notable challenge 
in the medical radiologic space. The “black box” 
of deep learning systems makes independent expert 
validation difficult without the use of test sets for 
performance evaluation. Additionally, pathologies 
can be radiologically subtle and require a volumetric 
comprehension of a series of images [14]. Ultrasound 
offers further challenges including variable pathology 

visualization (given operator dependency), significant 
variation in technical parameterization (such as gain, 
depth, focal zone, resolution, and instrumentation), and 
an even more complex volumetric comprehension across 
all three axes in real-time. While AI-based identification 
methods are relatively new to ultrasound as an imaging 
modality, studies are increasingly utilizing these 
approaches to improve or automate diagnosis [15,16]. 
Creating large and standardized image databases is an 
important step in attempting to overcome these obstacles 
by attempting to encompass the wide variety of case 
examples.

Consequently, several limitations exist in this initial 
exploration. In the absence of feature extraction, is 
possible that irrelevant features were recognized as 
important in designating test image labels. To that end, 
images were manually cropped (by a non-radiologist 
observer) and images did span across a variety of 
ultrasound manufacturers with different technical 
parameters. Overfitting to irrelevant features was 
attempted to be overcome by aiming for the higher end 
of the recommended size of 100 – 500 images per label 
using sample size augmentation by including multiple 
different images per patient (divided among training, 
validation, and test sets). However, this does increase the 
risk of data leakage. Additionally, due to an increasing 
presence of NAFLD in the general population, it is 
possible that in the absence of chemical-shift MRI or 
liver biopsy, patients within the “Not Fatty Liver” group 
may have had subclinical or unrecognized NAFLD. 
For example, retrospective quality control found that 5 
of the 100 patients within the “Not Fatty Liver” label 
later had a diagnosis of type II diabetes (perhaps not 
unexpected given the BMIs presented in table 3). The 
use of the described exclusion criteria was used to 
attempt to limit the chance of undiagnosed NAFLD in 
this population. Similarly, as patients were identified 
through retrospective chart review, the veracity of 
medical documentation is not always guaranteed. Finally, 
because NAFLD represents systemic hepatic disease, 
it is possible that within any single ultrasound image, 
variable degrees of hepatic steatosis may be present.

Despite these limitations, extensive future directions 
exist. Specifically, the image database and training set 
may be improved by standardizing the examination 
technique and technical specifications (such as the 
ultrasound machine and parameters). Additionally, 
identification of the relevant significant features used 
by the model for label discrimination may be used for 
clinical and research applications. Moving forward it 
may be possible to create a “Fatty Liver Ultrasound 
Index”, in which the responsible clinician is provided a 
score to interpret.

Gummadi et al. US machine learning for NAFLD
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